Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1376243
  • 博文数量: 244
  • 博客积分: 10311
  • 博客等级: 上将
  • 技术积分: 3341
  • 用 户 组: 普通用户
  • 注册时间: 2008-10-14 21:50
文章分类

全部博文(244)

文章存档

2013年(6)

2012年(5)

2011年(16)

2010年(11)

2009年(172)

2008年(34)

分类: LINUX

2009-05-07 13:20:27

本文以流行的Samsung公司的S3C2410,openmoko平台和u-boot-1.3.2(2008.5 发布)为例,介绍如何在ZIX嵌入式开发环境下探索u-boot启动过程。

虽然u-boot已经广泛应用,由于其相对的复杂性使用户在了解其内部机理和进行u-boot的移植工作时还是会碰到困难。u-boot已有一些分析文档,但多数和真正的代码不能同步或者版本老旧,难以将概念和现实的代码匹配——即硬件板上跑的代码在文档资料中却看不到,更无法紧密的跟踪。本文涉及的代码基于在s3c2410硬件运行的成熟u-boot-1.3.2代码,版本较新,提供的特性非常丰富,而且在可以和。此u-boot代表了业界的较高水平,可以直接构建新版的嵌入式产品设计,有较高的应用价值。

u-boot总的启动流程如下
->reset
-> 设置CPU模式
-> 关闭看门狗/中断
-> 设置处理器时钟/片上总线
-> 初始化调试串口
-> MMU/外部总线/SDRAM等初始化
-> rom代码/数据搬移到ram
-> 初始化函数调用栈
-> 初始化外围设备/参数
-> 启动完毕,进入main_loop循环

嵌入式系统离不开bootloader初始化硬件以及引导操作系统。
现在,专用的嵌入式板子运行嵌入式Linux系统已经变得非常流行,u-boot是一种非常适合此类系统的bootloader。

u-boot主要提供以下功能:

  • 设置目标板硬件参数并初始化;
  • 为操作系统传递必要信息;
  • 执行交互式的底层操作;
  • 智能化装载操作系统;
  • 引导和运行的固件程序;
  • 支持大容量存储和USB接口

 

利用ZIX开发环境,能够通过比较直观的方式观察u-boot内部,而且可以将代码调试和分析同时进行,是一种了解、移植u-boot的强大工具。

使用arm工具链编译u-boot源代码,得到可以烧录的u-boot.bin文件。
在ZIX开发环境里,可以将u-boot.bin载入s3c2410板运行,并利用gdb调试。

gdb能通过JTAG接口访问硬件,也可以通过TCP/IP访问虚拟硬件。 建立好调试连接,即可通过gdb操纵u-boot启动过程,下面可以跟随代码的执行顺序,了解从上点开始,究竟哪些操作被执行。

s3c2410复位之后,pc指针会指向0x0地址。在u-boot代码中,该0x0地址是一个向量表,
第一条指令跳转branch到复位代码start_code。 位于cpu/arm920t/start.S汇编语言文件:

.globl _start  _start:  b start_code  
    ldr pc, _undefined_instruction 
    ldr pc, _software_interrupt 
    ldr pc, _prefetch_abort 
    ldr pc, _data_abort 
    ldr pc, _not_used 
    ldr pc, _irq 
    ldr pc, _fiq

复位指令跳转之后来到,开始执行arm920t处理器的基本初始化。
首先修改当前程序状态寄存器CPSR,使处理器进入Supervisor|32 bit ARM模式,
并关闭ARM9TDMI中断和快速中断,这是通过设置CPSR相应掩码实现的:

start_code: 
/*
* set the cpu to SVC32 mode
*/
mrs r0,cpsr
bic r0,r0,#0x1f
orr r0,r0,#0xd3
msr cpsr,r0

紧接着,将S3C2410特有的WTCON寄存器清零,此举仅为关闭看门狗,代码位置是:

    ldr r0, =pWTCON 
mov r1, #0x0
str r1, [r0]

然后,将S3C2410中断控制器INTMSK寄存器置为全1,
INTSUBMSK置为0x7ff,禁止全部中断源。358页起对此有详细描述:

    mov r1, #0xffffffff  
ldr r0, =INTMSK
str r1, [r0]
# if defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440) || defined(CONFIG_S3C2442) || \
defined(CONFIG_S3C2443)
ldr r1, =INTSUBMSK_val
ldr r0, =INTSUBMSK
str r1, [r0]
# endif

接下来,访问arm920t控制寄存器CP15,并置位最高两位[31,30]。
此两位置为0b11后,处理器时钟被设置为异步模式,允许处理器异步访问总线:

    mrc p15, 0, r1, c1, c0, 0 
orr r1, r1, #0xc0000000
mcr p15, 0, r1, c1, c0, 0

至此arm920t相关的配置完成,后面开始设定S3C2410时钟合成参数。
通过设置UPLL,MPLL和CLKDIVN三个寄存器(在237页起讲述),
得到需要的处理器工作频率,分别:

    ldr r0, =UPLLCON  
ldr r1, =UPLLCON_val
str r1, [r0]

    ldr r1, =MPLLCON_val  
str r1, [r0, #-4] /* MPLLCON */


/* FCLK:HCLK:PCLK = 1:2:4 */
ldr r0, =CLKDIVN
mov r1, #CLKDIVN_val
str r1, [r0]

S3C2410的UART0得到初始化,以便于尽早通过UART0打印信息。
此段代码从开始,其中涉及到的寄存器读者可参考293页起:

    /* enable uart */
ldr r0, =0x4c00000c /* clkcon */
ldr r1, =0x7fff0 /* all clocks on */
str r1, [r0]

/* gpio UART0 init */
ldr r0, =0x56000070
mov r1, #0xaa
str r1, [r0]

/* init uart */
ldr r0, =0x50000000
mov r1, #0x03
str r1, [r0]
ldr r1, =0x245
str r1, [r0, #0x04]
mov r1, #0x01
str r1, [r0, #0x08]
mov r1, #0x00
str r1, [r0, #0x0c]
mov r1, #0x1a
str r1, [r0, #0x28]

完成UART0设置之后,根据不同的编译时选项和运行时参数,代码会在进入相应的分支,分别是

  1. 从nand启动,代码执行lowlevel_init,主要是清除cpu cache,以及关闭mmu和i-cache,
    并且根据板极硬件配置初始化外部存储器总线和GPIO,最后把代码从nand flash中拷贝到ram中并继续执行。
  2. 从nor启动,与第1种情况相比,仅仅把代码拷贝部分简化,将DATA段从flash中拷贝到ram中,其余相同
  3. 从ram启动,因为u-boot已经处于配置好的ram中,
    所以会跳过所有cache,mmu,sdram,nand和nor相关代码,跳转到done_relocate执行

下面以最复杂的nand启动情况为例分析。首先会跳转到执行cpu_init_crit,
通过操作CP15完成flush处理器arm920t的cache和tlb,并关闭mmu和i-cache:

cpu_init_crit:
/*
* flush v4 I/D caches
*/
mov r0, #0
mcr p15, 0, r0, c7, c7, 0 /* flush v3/v4 cache */
mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */

/*
* disable MMU stuff and caches
 */
mrc p15, 0, r0, c1, c0, 0
bic r0, r0, #0x00002300
@ clear bits 13, 9:8 (--V- --RS)
bic r0, r0, #0x00000087
@ clear bits 7, 2:0 (B--- -CAM)
orr r0, r0, #0x00000002
@ set bit 2 (A) Align
orr r0, r0, #0x00001000
@ set bit 12 (I) I-Cache
mcr p15, 0, r0, c1, c0, 0

然后跳转到board/neo1973/common/lowlevel_init.S文件的执行,
进行总线数据宽度、时序、SDRAM控制、GPIO等配置,配置完毕后会返回start.S继续执行。
因为该代码是与板相关,故放在board目录里面。由于代码较多,只粘贴开始部分:

    /* memory control configuration */  
/* make r0 relative the current location so that it */
/* reads SMRDATA out of FLASH rather than memory ! */
adr r0, SMRDATA
ldr r1, =BWSCON /* Bus Width Status Controller */
add r2, r0, #13*4

完成板级设置后,在cpu/arm920t/start.S的判断代码自身的执行位置。如果从stepping stone内执行,
并且u-boot配置为nand boot模式,则跳转到nand_load拷贝代码:

    ldr r1, =BWSCON /* Z = CPU booted from NAND */ 
ldr r1, [r1]
tst r1, #6 /* BWSCON[2:1] = OM[1:0] */
teqeq r0, #0 /* Z &= running at address 0 */
beq nand_load

在是nand_load代码,首先会跳转到执行may_resume
以检测系统是从待机模式唤醒还是上电启动。如果唤醒,则会根据之前保存的现场进行相应处理,
本文不做更多叙述;如果是启动,则会返回nand_load继续执行。在nand_load里初始化s3c2410的nand controller,
涉及存储器映射和寄存器NFCONF等,参见215页起。同样,仅粘贴开始部分的代码: 

    mov r1, #S3C2410_NAND_BASE 
ldr r2, =0xf842 @ initial value enable tacls=3,rph0=6,rph1=0
str r2, [r1, #oNFCONF]
ldr r2, [r1, #oNFCONF]
bic r2, r2, #0x800 @ enable chip

在继续根据配置设定栈指针,为后面调用C函数执行拷贝作准备:

    ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */ 
sub r0, r0, #CFG_MALLOC_LEN /* malloc area */
sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */
#ifdef CONFIG_USE_IRQ
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12 /* leave 3 words for abort-stack */

然后在,将SDRAM中的目标地址存入r0,0x0地址存入r1,u-boot长度存入r2,
跳入cpu/arm920t/s3c24x0/nand_read.c文件执行nand_read_ll函数,该函数接受前面3个寄存器中的值作为参数,并将返回值放回r0:

    ldr r0, _TEXT_BASE 
mov r1, #0x0
mov r2, #CFG_UBOOT_SIZE
bl nand_read_ll

在nand_read_ll函数中实现了nand flash访问代码,并且支持自动跳过坏块的特性,函数循环执行nand页面读取并存入SDRAM,直到u-boot全部拷贝完,并返回0,该C代码留给读者自己阅读。nand_read_ll返回0后,会跳转到ok_nand_read,并对拷贝的头4K字节进行校验:

    @ verify 
mov r0, #0
@ldr r1, =0x33f00000
ldr r1, _TEXT_BASE
mov r2, #0x400
@ 4 bytes * 1024 = 4K-bytes
go_next:
ldr r3, [r0], #4
ldr r4, [r1], #4
teq r3, r4
bne notmatch
subs r2, r2, #4
beq done_nand_read
bne go_next

校验通过后代码,在地址为_booted_from_nand的SDRAM位置保存1,以便告诉上层软件本次启动是从nand引导:

done_nand_read: 
ldr r0, _booted_from_nand
mov r1, #1
strb r1, [r0]

然后在,将中断向量表拷贝到0x0: 

    mov r0, #0 
ldr r1, _TEXT_BASE
mov r2, #0x40
irqvec_cpy_next:
ldr r3, [r1], #4
str r3, [r0], #4
subs r2, r2, #4
bne irqvec_cpy_next

在,设置栈指针: 

    ldr r0, _TEXT_BASE    /* upper 128 KiB: relocated uboot */ 
sub r0, r0, #CFG_MALLOC_LEN
/* malloc area */
sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */
#ifdef CONFIG_USE_IRQ
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12 /* leave 3 words for abort-stack */

在,清除bss段并跳转到真正的C函数start_armboot,进入更高级的硬件初始化代码,汇编初始化部分也全部完成使命: 

    ldr r0, _bss_start /* find start of bss segment */ 
ldr r1, _bss_end /* stop here */
mov r2, #0x00000000 /* clear */

clbss_l:
str r2, [r0] /* clear loop... */
add r0, r0, #4
cmp r0, r1
ble clbss_l

ldr pc, _start_armboot

start_armboot函数位于lib_arm/board.c文件,首先初始化globel_data类型的变量gd。该变量是一个结构,其成员大多是板子的一些基本设置,如序列号、ip地址、mac地址等(欲知结构的原型可参考include/asm-arm/globel_data.h和include/asm-arm/u-boot.h): 

         gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
/* compiler optimization barrier needed for GCC >= 3.4 */
__asm__ __volatile__("": : :"memory");

memset ((void*)gd, 0, sizeof (gd_t));
gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
memset (gd->bd, 0, sizeof (bd_t));

然后在一个for循环中从init_sequence地址开始,逐个调用初始化C函数至NULL为止。这些routine函数按调用顺序分别是

  1. cpu_init() ——在common/main.c文件,执行初始化中断栈操作
  2. board_init() ——在board/neo1973/gta01/gta01.c文件中,执行板级初始化,主要是更新GPIO和PLL设置
  3. interrupt_init() ——在/cpu/arm920t/s3c24x0/interrupts.c文件中,执行时钟中断初始化
  4. env_init() ——在common/env_nand.c文件中,设置缺省环境变量
  5. init_baudrate() ——在lib_arm/board.c文件中,将环境变量中的baudrate存入bd_info结构bd
  6. serial_init() ——在common/serial.c文件中,调用驱动中真正的init()初始化串口
  7. console_init_f() ——在common/console.c文件中,更新global_data结构gd的have_console标记为1
  8. display_banner() ——在lib_arm/board.c文件中,打印u-boot banner,输出版本、运行地址等信息。比如在控制台看到的
  9. init_func_i2c() ——在lib_arm/board.c文件中,初始化i2c总线
  10. dram_init() ——在board/neo1973/gta01/gta01.c文件中,填充bd->bi_dram[0]的start和size成员,用来描述u-boot可用的ram
  11. display_dram_config() ——在board/neo1973/gta01/gta01.c文件中,打印当前ram配置。在控制台能够看到相应的 DRAM:  128 MB

利用gdb可以清晰的看到调用过程:

         for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) { 
if ((*init_fnc_ptr)() != 0) {
hang ();
}
}

接着是一些可选外设的初始化,如显示屏、nor、nand、dataflash、网卡等,此过程执行后全部初始化工作完成。下面仅粘贴nor代码:

#ifndef CFG_NO_FLASH 
/* configure available FLASH banks */
size = flash_init ();
display_flash_config (size);
#endif /* CFG_NO_FLASH */

之后在进入无限循环,调用common/main.c文件的main_loop()函数,u-boot完成启动过程。main_loop提供一个交互式命令行,可通过串口或usb控制台操作,也可以进一步引导操作系统:

         for (;;) { 
main_loop ();
}

 本文作者:周明 原载于博客,请尊重作者劳动,欢迎转载但需注明原文链接

阅读(1177) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~