作者:龙林 EMAIL:dragon_hn@sohu.com WEB:
ECC简介 ??由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。为了检测数据的可靠性,在应用NAND Flash的系统中一般都会采用一定的坏区管理策略,而管理坏区的前提是能比较可靠的进行坏区检测。 ??如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。 ??对数据的校验常用的有奇偶校验、CRC校验等,而在NAND Flash处理中,一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。
ECC原理 ??ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1,如下图所示:
?? ??ECC的列校验和生成规则如下图所示:
??用数学表达式表示为: ????P4=D7(+)D6(+)D5(+)D4??P4`=D3(+)D2(+)D1(+)D0 ????P2=D7(+)D6(+)D3(+)D2??P2`=D5(+)D4(+)D1(+)D0 ????P1=D7(+)D5(+)D3(+)D1??P1`=D6(+)D4(+)D2(+)D0 ??这里(+)表示“位异或”操作 ?? ??ECC的行校验和生成规则如下图所示:
??用数学表达式表示为: ????P8 = bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P8 ????…………………………………………………………………………………… ??这里(+)同样表示“位异或”操作 ? ??当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB(out-of-band)数据区中。 ??当从NAND Flash中读取数据的时候,每256字节我们生成一个ECC校验和,称之为新ECC校验和。 ??校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。
ECC算法的实现 ??static const u_char nand_ecc_precalc_table[] = ??{ ????0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, ????0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, ????0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, ????0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, ????0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, ????0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, ????0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, ????0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, ????0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, ????0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, ????0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, ????0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, ????0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, ????0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, ????0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, ????0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 ??};
??//?Creates non-inverted ECC code from line parity ??static void nand_trans_result(u_char reg2, u_char reg3,u_char *ecc_code) ??{ ????u_char a, b, i, tmp1, tmp2;
????/* Initialize variables */ ????a = b = 0x80; ????tmp1 = tmp2 = 0;
????/* Calculate first ECC byte */ ????for (i = 0; i < 4; i++) ????{ ??????if (reg3 & a)??? /* LP15,13,11,9 --> ecc_code[0] */ ????????tmp1 |= b; ??????b >>= 1; ??????if (reg2 & a)??? /* LP14,12,10,8 --> ecc_code[0] */ ????????tmp1 |= b; ??????b >>= 1; ??????a >>= 1; ????}
????/* Calculate second ECC byte */ ????b = 0x80; ????for (i = 0; i < 4; i++) ????{ ??????if (reg3 & a)??? /* LP7,5,3,1 --> ecc_code[1] */ ????????tmp2 |= b; ??????b >>= 1; ??????if (reg2 & a)??? /* LP6,4,2,0 --> ecc_code[1] */ ????????tmp2 |= b; ??????b >>= 1; ??????a >>= 1; ????}
????/* Store two of the ECC bytes */ ????ecc_code[0] = tmp1; ????ecc_code[1] = tmp2; ??}
??//?Calculate 3 byte ECC code for 256 byte block ??void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) ??{ ????u_char idx, reg1, reg2, reg3; ????int j;
????/* Initialize variables */ ????reg1 = reg2 = reg3 = 0; ????ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
????/* Build up column parity */ ????for(j = 0; j < 256; j++) ????{
??????/* Get CP0 - CP5 from table */ ??????idx = nand_ecc_precalc_table[dat[j]]; ??????reg1 ^= (idx & 0x3f);
??????/* All bit XOR = 1 ? */ ??????if (idx & 0x40) { ????????reg3 ^= (u_char) j; ????????reg2 ^= ~((u_char) j); ??????} ????}
????/* Create non-inverted ECC code from line parity */ ????nand_trans_result(reg2, reg3, ecc_code);
????/* Calculate final ECC code */ ????ecc_code[0] = ~ecc_code[0]; ????ecc_code[1] = ~ecc_code[1]; ????ecc_code[2] = ((~reg1) << 2) | 0x03; ??}
??//?Detect and correct a 1 bit error for 256 byte block ??int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) ??{ ????u_char a, b, c, d1, d2, d3, add, bit, i;
????/* Do error detection */ ????d1 = calc_ecc[0] ^ read_ecc[0]; ????d2 = calc_ecc[1] ^ read_ecc[1]; ????d3 = calc_ecc[2] ^ read_ecc[2];
????if ((d1 | d2 | d3) == 0) ????{ ??????/* No errors */ ??????return 0; ????} ????else ????{ ??????a = (d1 ^ (d1 >> 1)) & 0x55; ??????b = (d2 ^ (d2 >> 1)) & 0x55; ??????c = (d3 ^ (d3 >> 1)) & 0x54;
??????/* Found and will correct single bit error in the data */ ??????if ((a == 0x55) && (b == 0x55) && (c == 0x54)) ??????{ ????????c = 0x80; ????????add = 0; ????????a = 0x80; ????????for (i=0; i<4; i++) ????????{ ??????????if (d1 & c) ????????????add |= a; ??????????c >>= 2; ??????????a >>= 1; ????????} ????????c = 0x80; ????????for (i=0; i<4; i++) ????????{ ??????????if (d2 & c) ????????????add |= a; ??????????c >>= 2; ??????????a >>= 1; ????????} ????????bit = 0; ????????b = 0x04; ????????c = 0x80; ????????for (i=0; i<3; i++) ????????{ ??????????if (d3 & c) ????????????bit |= b; ??????????c >>= 2; ??????????b >>= 1; ????????} ????????b = 0x01; ????????a = dat[add]; ????????a ^= (b << bit); ????????dat[add] = a; ????????return 1; ??????} ??????else ??????{ ????????i = 0; ????????while (d1) ????????{ ??????????if (d1 & 0x01) ????????????++i; ??????????d1 >>= 1; ????????} ????????while (d2) ????????{ ??????????if (d2 & 0x01) ????????????++i; ??????????d2 >>= 1; ????????} ????????while (d3) ????????{ ??????????if (d3 & 0x01) ????????????++i; ??????????d3 >>= 1; ????????} ????????if (i == 1) ????????{ ??????????/* ECC Code Error Correction */ ??????????read_ecc[0] = calc_ecc[0]; ??????????read_ecc[1] = calc_ecc[1]; ??????????read_ecc[2] = calc_ecc[2]; ??????????return 2; ????????} ????????else ????????{ ??????????/* Uncorrectable Error */ ??????????return -1; ????????} ??????} ????}
????/* Should never happen */ ????return -1; ??}
|