Chinaunix首页 | 论坛 | 博客
  • 博客访问: 978147
  • 博文数量: 214
  • 博客积分: 10173
  • 博客等级: 上将
  • 技术积分: 1867
  • 用 户 组: 普通用户
  • 注册时间: 2007-06-18 13:48
文章分类

全部博文(214)

文章存档

2012年(1)

2010年(13)

2009年(5)

2008年(98)

2007年(97)

分类: LINUX

2007-08-14 16:35:38

 ARM体系结构中,把复位、中断、快速中断等都看作‘异常’,当这些‘异常’发生时,CPU会到固定地址处去找指令,他们对应的地址如下:

          地址                异常类型      进入时的工作模式

          0x00000000         Reset                 Supervisor

          0x00000004         Und                  Undefined

          0x00000008         Soft interupt           Supervisor

          0x0000000c         Abort(prefetch)        Abort

          0x00000010         Abort(data)            Abort

          0x00000014         Reserved              Reserved

          0x00000018         IRQ                   IRQ

          0x0000001c         FIQ                   FIQ

     首先要明确的一点就是,无论内存地址空间是如何映射的,以上这些地址都不会变,比如当有快速中断发生时,ARM将铁定到0X0000001C这个地址处取指令。这也是BOOTLOADER把操作系统引导以后,内存必须重映射的原因!否则操作系统不能真正接管整套系统!

     LINUX启动以后要初始化这些区域,初始化代码在main.c中的start_kernel()中,具体是调用函数trap_ini()来实现的。如下面所示(具体可参照entry-armv.S):

     .LCvectors:         swi    SYS_ERROR0

                   b       __real_stubs_start + (vector_undefinstr - __stubs_start)

                   ldr     pc, __real_stubs_start + (.LCvswi - __stubs_start)

                   b       __real_stubs_start + (vector_prefetch - __stubs_start)

                   b       __real_stubs_start + (vector_data - __stubs_start)

                   b       __real_stubs_start + (vector_addrexcptn - __stubs_start)

                   b       __real_stubs_start + (vector_IRQ - __stubs_start)

                   b       __real_stubs_start + (vector_FIQ - __stubs_start)

 

     ENTRY(__trap_init)

                   stmfd         sp!, {r4 - r6, lr}

 

                   adr    r1, .LCvectors                        @ set up the vectors

                   ldmia r1, {r1, r2, r3, r4, r5, r6, ip, lr}

                   stmia r0, {r1, r2, r3, r4, r5, r6, ip, lr}

 

                   add    r2, r0, #0x200

                   adr    r0, __stubs_start          @ copy stubs to 0x200

                   adr    r1, __stubs_end

1:                ldr     r3, [r0], #4

                   str     r3, [r2], #4

                   cmp  r0, r1

                   blt     1b

                   LOADREGS(fd, sp!, {r4 - r6, pc})

 

     以上可以看出这个函数初始化了中断向量,实际上把相应的跳转指令拷贝到了对应的地址。

 

当发生中断时,不管是从用户模式还是管理模式调用的,最终都要调用do_IRQ():

     __irq_usr:  sub    sp, sp, #S_FRAME_SIZE

                   stmia sp, {r0 - r12}                         @ save r0 - r12

                   ldr     r4, .LCirq

                   add    r8, sp, #S_PC

                   ldmia r4, {r5 - r7}                           @ get saved PC, SPSR

                   stmia r8, {r5 - r7}                           @ save pc, psr, old_r0

                   stmdb         r8, {sp, lr}^

                   alignment_trap r4, r7, __temp_irq

                   zero_fp

1:                get_irqnr_and_base r0, r6, r5, lr

                   movne        r1, sp

                   adrsvc        ne, lr, 1b

                   @

                   @ routine called with r0 = irq number, r1 = struct pt_regs *

                   @

                   bne    do_IRQ    @ 调用do_IRQ来实现具体的中断处理

                   mov  why, #0

                   get_current_task tsk

                   b       ret_to_user

 

     对于以上代码,在很多文章中都有过分析,这里不再赘述。

 

 

     Linux每个中断通过一个结构irqdesc来描述,各中断的信息都在这个结构中得以体现:

  struct irqdesc {

         unsigned int         nomask   : 1;            /* IRQ does not mask in IRQ   */

         unsigned int         enabled  : 1;              /* IRQ is currently enabled   */

         unsigned int         triggered: 1;                 /* IRQ has occurred           */

         unsigned int         probing  : 1;              /* IRQ in use for a probe     */

         unsigned int         probe_ok : 1;              /* IRQ can be used for probe  */

         unsigned int         valid    : 1;               /* IRQ claimable       */

         unsigned int         noautoenable : 1;        /* don't automatically enable IRQ */

         unsigned int         unused   :25;

         void (*mask_ack)(unsigned int irq);         /* Mask and acknowledge IRQ   */

         void (*mask)(unsigned int irq);                /* Mask IRQ                      */

         void (*unmask)(unsigned int irq);   /* Unmask IRQ                  */

         struct irqaction *action;

         /*

          * IRQ lock detection

          */

         unsigned int         lck_cnt;

         unsigned int         lck_pc;

         unsigned int         lck_jif;

     };

 

     在具体的ARM芯片中会有很多的中断类型,每一种类型的中断用以上结构来表示:

struct irqdesc irq_desc[NR_IRQS];   /* NR_IRQS根据不同的MCU会有所区别*/

     在通过request_irq()函数注册中断服务程序的时候,将会把中断向量和中断服务程序对应起来。

     我们来看一下request_irq的源码:

     int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *),

                    unsigned long irq_flags, const char * devname, void *dev_id)

     {

         unsigned long retval;

         struct irqaction *action;

 

         if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||

             (irq_flags & SA_SHIRQ && !dev_id))

                   return -EINVAL;

 

         action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);

         if (!action)              /*  生成action结构*/

                   return -ENOMEM;

 

         action->handler = handler;

         action->flags = irq_flags;

         action->mask = 0;

         action->name = devname;

         action->next = NULL;

         action->dev_id = dev_id;

 

         retval = setup_arm_irq(irq, action);   /*把中断号irqaction 对应起来*/

 

         if (retval)

                   kfree(action);

         return retval;

     }

     其中第一个参数irq就是中断向量,第二个参数即是要注册的中断服务程序。很多同仁可能疑惑的是,我们要注册的中断向量号是怎么确定的呢?这要根据具体芯片的中断控制器,比如三星的S3C2410,需要          通过读取其中的中断状态寄存器,来获得是哪个设备发生了中断:

   

 

     if defined(CONFIG_ARCH_S3C2410)

     #include

 

                   .macro  disable_fiq

                   .endm

                   .macro  get_irqnr_and_base, irqnr, irqstat, base, tmp

                   mov  r4, #INTBASE             @ virtual address of IRQ registers

                   ldr     \irqnr, [r4, #0x8]  @ read INTMSK   中断掩码寄存器

                   ldr     \irqstat, [r4, #0x10]   @ read INTPND  中断寄存器

                   bics    \irqstat, \irqstat, \irqnr

                   bics    \irqstat, \irqstat, \irqnr

                   beq    1002f                  

                   mov  \irqnr, #0

1001:                   tst     \irqstat, #1

                   bne    1002f                            @ found IRQ

                   add    \irqnr, \irqnr, #1

                   mov  \irqstat, \irqstat, lsr #1

                   cmp  \irqnr, #32

                   bcc    1001b

1002:

                   .endm

                   .macro  irq_prio_table

                   .endm                 

     以上代码也告诉了我们,中断号的确定,其实是和S3C2410手册中SRCPND寄存器是一致的,即:

 

     /* Interrupt Controller */

     #define IRQ_EINT0             0       /* External interrupt 0 */

     #define IRQ_EINT1             1       /* External interrupt 1 */

     #define IRQ_EINT2             2       /* External interrupt 2 */

     #define IRQ_EINT3             3       /* External interrupt 3 */

     #define IRQ_EINT4_7                  4       /* External interrupt 4 ~ 7 */

     #define IRQ_EINT8_23                5       /* External interrupt 8 ~ 23 */

     #define IRQ_RESERVED6            6       /* Reserved for future use */

     #define IRQ_BAT_FLT                 7

     #define IRQ_TICK               8       /* RTC time tick interrupt  */

     #define IRQ_WDT                        9       /* Watch-Dog timer interrupt */

     #define IRQ_TIMER0                   10     /* Timer 0 interrupt */

     #define IRQ_TIMER1                   11     /* Timer 1 interrupt */

     #define IRQ_TIMER2                   12     /* Timer 2 interrupt */

     #define IRQ_TIMER3                   13     /* Timer 3 interrupt */

     #define IRQ_TIMER4                   14     /* Timer 4 interrupt */

     #define IRQ_UART2           15     /* UART 2 interrupt  */

     #define IRQ_LCD                          16     /* reserved for future use */

     #define IRQ_DMA0            17     /* DMA channel 0 interrupt */

     #define IRQ_DMA1            18     /* DMA channel 1 interrupt */

     #define IRQ_DMA2            19     /* DMA channel 2 interrupt */

     #define IRQ_DMA3            20     /* DMA channel 3 interrupt */

     #define IRQ_SDI                           21     /* SD Interface interrupt */

     #define IRQ_SPI0                 22     /* SPI interrupt */

     #define IRQ_UART1           23     /* UART1 receive interrupt */

     #define IRQ_RESERVED24          24

     #define IRQ_USBD              25     /* USB device interrupt */

     #define IRQ_USBH              26     /* USB host interrupt */

     #define IRQ_IIC                            27     /* IIC interrupt */

     #define IRQ_UART0           28     /* UART0 transmit interrupt */

     #define IRQ_SPI1                 29     /* UART1 transmit interrupt */

     #define IRQ_RTC                          30     /* RTC alarm interrupt */

     #define IRQ_ADCTC          31     /* ADC EOC interrupt */

     #define NORMAL_IRQ_OFFSET        32

     这些宏定义在文件irqs.h中,大家可以看到它的定义取自S3C2410的文档。

  

     总结: linux在初始化的时候已经把每个中断向量的地址准备好了!就是说添加中断服务程序的框架已经给出,当某个中断发生时,将会到确定的地址处去找指令,所以我们做驱动程序时,只需要经过request_irq()来挂接自己编写的中断服务程序即可。

 

     另:对于快速中断,linux在初始化时是空的,所以要对它挂接中断处理程序,就需要单独的函数set_fiq_handler()来实现,此函数在源文件fiq.c中,有兴趣的读者可进一步研究。

阅读(1321) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~