Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2797591
  • 博文数量: 423
  • 博客积分: 7770
  • 博客等级: 少将
  • 技术积分: 4766
  • 用 户 组: 普通用户
  • 注册时间: 2006-11-09 11:58
个人简介

Oracle/DB2/Postgresql/Mysql/Hadoop/Greenplum/Postgres-xl/Mongodb

文章分类

全部博文(423)

文章存档

2019年(3)

2018年(6)

2017年(27)

2016年(23)

2015年(30)

2014年(16)

2013年(31)

2012年(73)

2011年(45)

2010年(14)

2009年(30)

2008年(30)

2007年(63)

2006年(32)

分类: 大数据

2017-04-09 22:12:14

新建一个表按ID字段HASH分布 

tank=# create table foo(a int,b text) distributed by (a);
CREATE TABLE
tank=# insert into foo values(generate_series(1,10000),'tank');
INSERT 0 10000
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 |  3348
             1 |  3337
             0 |  3315
(3 rows)


改变为分布键为B字段(b)因为B字段类型为文本型故不能进行分布健 
tank=# alter table foo set distributed by (b);
ALTER TABLE
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 10000
(1 row)


tank=# insert into foo values(generate_series(1,10000),'tank');
INSERT 0 10000
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 20000
(1 row)




将原来分布健为 a字段。


tank=# alter table foo set distributed by (a);
ALTER TABLE
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 |  6696
             1 |  6674
             0 |  6630
(3 rows)




改变分布键方式为随机分布
tank=# ALTER TABLE foo SET DISTRIBUTED RANDOMLY;
ALTER TABLE
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 |  6696
             1 |  6674
             0 |  6630
(3 rows)


tank=# insert into foo values(generate_series(1,10000),'tank');
INSERT 0 10000
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 10037
             1 | 10024
             0 |  9939
(3 rows)


tank=# insert into foo values(generate_series(1,10000),'tank');
INSERT 0 10000
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 13376
             1 | 13334
             0 | 13290
(3 rows)


tank=# insert into foo values(generate_series(1,10000),'tank');
INSERT 0 10000
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 16716
             1 | 16666
             0 | 16618
(3 rows)


tank=# alter table foo set distributed by (a);
ALTER TABLE
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 16740
             1 | 16685
             0 | 16575
(3 rows)


重新分配置数据分布


tank=# ALTER TABLE foo SET WITH (REORGANIZE=TRUE);
ALTER TABLE
tank=# SELECT gp_segment_id, count(1) FROM foo GROUP BY gp_segment_id;
 gp_segment_id | count 
---------------+-------
             2 | 16740
             1 | 16685
             0 | 16575
(3 rows)

新建一个列压缩表。

tank=# create table foozip (like foo) with(appendonly=true,compresstype=zlib,compresslevel=1,orientation=column);
NOTICE:  Table doesn't have 'DISTRIBUTED BY' clause, defaulting to distribution columns from LIKE table
CREATE TABLE
tank=# insert into foozip select * from foo;
INSERT 0 30000


Dropping a Table
The DROP TABLE command removes tables from the database. For example:
DROP TABLE mytable;
To empty a table of rows without removing the table definition, use DELETE or TRUNCATE. For example:
DELETE FROM mytable;
TRUNCATE mytable;

分区表操作

1、按日期分区定期开始日期和结束日期每天一分区表,并默认分区表
tank=# create table sale4(id int,date date,amt decimal(10,2))
distributed by (id)
partition by range(date)
(start (date '2017-01-01')inclusive
end(date '2017-04-01')exclusive
every(interval '1 day'),DEFAULT PARTITION extra);

TICE:  CREATE TABLE will create partition "sale_1_prt_1" for table "sale"
NOTICE:  CREATE TABLE will create partition "sale_1_prt_2" for table "sale"
。。。。。。。。。。。。。。。。。。。。。。。。
NOTICE:  CREATE TABLE will create partition "sale_1_prt_86" for table "sale"
NOTICE:  CREATE TABLE will create partition "sale_1_prt_87" for table "sale"
NOTICE:  CREATE TABLE will create partition "sale_1_prt_88" for table "sale"
NOTICE:  CREATE TABLE will create partition "sale_1_prt_89" for table "sale"
NOTICE:  CREATE TABLE will create partition "sale_1_prt_90" for table "sale"
CREATE TABLE
tank=# 


INSERT 0 1
tank=# insert into sale values(1,'2017-02-03', 87.32);
INSERT 0 1
tank=# insert into sale values(1,'2017-02-03', 87.32);
INSERT 0 1
tank=# insert into sale values(1,'2017-02-03', 87.32);
INSERT 0 1
tank=# insert into sale values(1,'2017-04-03', 87.32);
tank=# select * from sale;
 id |    date    |  amt  
----+------------+-------
  1 | 2017-01-01 | 87.32
  1 | 2017-02-03 | 87.32
  1 | 2017-02-03 | 87.32
  1 | 2017-02-03 | 87.32
  1 | 2017-02-03 | 87.32
  1 | 2017-02-03 | 87.32
(6 rows)


tank=# explain select * from sale where date='2017-01-01';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather Motion 2:1  (slice1; segments: 2)  (cost=0.00..1802.50 rows=129 width=21)
   ->  Append  (cost=0.00..1802.50 rows=65 width=21)
         ->  Seq Scan on sale_1_prt_1 sale  (cost=0.00..901.25 rows=33 width=21)
               Filter: date = '2017-01-01'::date
         ->  Seq Scan on sale_1_prt_other sale  (cost=0.00..901.25 rows=33 width=21)
               Filter: date = '2017-01-01'::date
(6 rows)


tank=# 


2、声明和名称单独每个分区


tank=# CREATE TABLE sales6 (id int, date date, amt decimal(10,2))
 DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
( PARTITION Jan08 START (date '2008-01-01') INCLUSIVE ,
 PARTITION Feb08 START (date '2008-02-01') INCLUSIVE ,
 PARTITION Mar08 START (date '2008-03-01') INCLUSIVE ,
PARTITION Apr08 START (date '2008-04-01') INCLUSIVE ,
 PARTITION May08 START (date '2008-05-01') INCLUSIVE ,
 PARTITION Jun08 START (date '2008-06-01') INCLUSIVE ,
END (date '2009-01-01') EXCLUSIVE,DEFAULT PARTITION extra );
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_extra" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_jan08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_feb08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_mar08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_apr08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_may08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_jun08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_jul08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_aug08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_sep08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_oct08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_nov08" for table "sales6"
NOTICE:  CREATE TABLE will create partition "sales6_1_prt_dec08" for table "sales6"
CREATE TABLE
tank=# 

tank=# insert into sales6 values(generate_series(1,99999),'2008-11-28', 1233.32);
INSERT 0 99999
Time: 7817.835 ms
tank=# SELECT gp_segment_id, count(1) FROM sales6 GROUP BY gp_segment_id;
 gp_segment_id |  count   
---------------+----------
             1 | 18532484
             0 | 18532505
(2 rows)


tank=# explain select count(*) from sales6 where date='2008-10-28';
                                             QUERY PLAN                                             
----------------------------------------------------------------------------------------------------
 Aggregate  (cost=1802.89..1802.90 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=1802.82..1802.87 rows=1 width=8)
         ->  Aggregate  (cost=1802.82..1802.83 rows=1 width=8)
               ->  Append  (cost=0.00..1802.50 rows=43 width=0)
                     ->  Seq Scan on sales6_1_prt_extra sales6  (cost=0.00..901.25 rows=22 width=0)
                           Filter: date = '2008-10-28'::date
                     ->  Seq Scan on sales6_1_prt_oct08 sales6  (cost=0.00..901.25 rows=22 width=0)
                           Filter: date = '2008-10-28'::date
 Optimizer status: legacy query optimizer
(9 rows)


tank=# SELECT partitionboundary, partitiontablename, partitionname, partitionlevel, partitionrank FROM pg_partitions WHERE tablename='sales6';
                          partitionboundary                          | partitiontablename | partitionname
 | partitionlevel | partitionrank 
---------------------------------------------------------------------+--------------------+--------------
-+----------------+---------------
 DEFAULT PARTITION extra                                             | sales6_1_prt_extra | extra        
 |              0 |              
 PARTITION jan08 START ('2008-01-01'::date) END ('2008-02-01'::date) | sales6_1_prt_jan08 | jan08        
 |              0 |             1
 PARTITION feb08 START ('2008-02-01'::date) END ('2008-03-01'::date) | sales6_1_prt_feb08 | feb08        
 |              0 |             2
 PARTITION mar08 START ('2008-03-01'::date) END ('2008-04-01'::date) | sales6_1_prt_mar08 | mar08        
 |              0 |             3
 PARTITION apr08 START ('2008-04-01'::date) END ('2008-05-01'::date) | sales6_1_prt_apr08 | apr08        
 |              0 |             4
 PARTITION may08 START ('2008-05-01'::date) END ('2008-06-01'::date) | sales6_1_prt_may08 | may08        
 |              0 |             5
 PARTITION jun08 START ('2008-06-01'::date) END ('2008-07-01'::date) | sales6_1_prt_jun08 | jun08        
 |              0 |             6
 PARTITION jul08 START ('2008-07-01'::date) END ('2008-08-01'::date) | sales6_1_prt_jul08 | jul08        
 |              0 |             7
 PARTITION aug08 START ('2008-08-01'::date) END ('2008-09-01'::date) | sales6_1_prt_aug08 | aug08        
 |              0 |             8
 PARTITION sep08 START ('2008-09-01'::date) END ('2008-10-01'::date) | sales6_1_prt_sep08 | sep08        
 |              0 |             9
 PARTITION oct08 START ('2008-10-01'::date) END ('2008-11-01'::date) | sales6_1_prt_oct08 | oct08        
 |              0 |            10
 PARTITION nov08 START ('2008-11-01'::date) END ('2008-12-01'::date) | sales6_1_prt_nov08 | nov08        
 |              0 |            11
 PARTITION dec08 START ('2008-12-01'::date) END ('2009-01-01'::date) | sales6_1_prt_dec08 | dec08        
 |              0 |            12
(13 rows)


三、数字范围分区表


tank=# CREATE TABLE table1 (id int,num int,tag int)
DISTRIBUTED BY (id)
PARTITION BY RANGE (id)
( START (1) END (900000) EVERY (10000),
DEFAULT PARTITION extra )
;






四、列表分区:


tank=# CREATE TABLE rank (id int, rank int, year int, gender char(1), count int )
DISTRIBUTED BY (id)
PARTITION BY LIST (gender)
( PARTITION girls VALUES ('F'),
PARTITION boys VALUES ('M'),
DEFAULT PARTITION other );
NOTICE:  CREATE TABLE will create partition "rank_1_prt_girls" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_boys" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_other" for table "rank"
CREATE TABLE
Time: 535.016 ms
tank=# insert into rank values(generate_series(1,99999),1, 2008, 'F',3434);
INSERT 0 99999
Time: 381.087 ms
tank=# insert into rank values(generate_series(1,99999),1, 2009, 'M',34);
INSERT 0 99999
Time: 250.010 ms
tank=# insert into rank values(generate_series(1,99999),1, 2009, 'M',34);
INSERT 0 99999
Time: 312.867 ms
tank=# insert into rank values(generate_series(1,99999),1, 2009, 'M',34);
INSERT 0 99999
Time: 364.634 ms
tank=# insert into rank values(generate_series(1,999998),1, 2019, 'I',34);
INSERT 0 999998
Time: 2918.629 ms
tank=# explain select * from rank where gender='I';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather Motion 2:1  (slice1; segments: 2)  (cost=0.00..857.50 rows=61 width=24)
   ->  Append  (cost=0.00..857.50 rows=31 width=24)
         ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..857.50 rows=31 width=24)
               Filter: gender = 'I'::bpchar
(4 rows)


Time: 26.741 ms
tank=# explain select * from rank where gender='F';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather Motion 2:1  (slice1; segments: 2)  (cost=0.00..1715.00 rows=122 width=24)
   ->  Append  (cost=0.00..1715.00 rows=61 width=24)
         ->  Seq Scan on rank_1_prt_girls rank  (cost=0.00..857.50 rows=31 width=24)
               Filter: gender = 'F'::bpchar
         ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..857.50 rows=31 width=24)
               Filter: gender = 'F'::bpchar
(6 rows)


Time: 18.301 ms
tank=# explain select * from rank where gender='M';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather Motion 2:1  (slice1; segments: 2)  (cost=0.00..1715.00 rows=122 width=24)
   ->  Append  (cost=0.00..1715.00 rows=61 width=24)
         ->  Seq Scan on rank_1_prt_boys rank  (cost=0.00..857.50 rows=31 width=24)
               Filter: gender = 'M'::bpchar
         ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..857.50 rows=31 width=24)
               Filter: gender = 'M'::bpchar
(6 rows)


Time: 22.965 ms
tank=# explain select count(*) from rank where gender='M';
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Aggregate  (cost=1715.36..1715.37 rows=1 width=8)
   ->  Gather Motion 2:1  (slice1; segments: 2)  (cost=1715.31..1715.35 rows=1 width=8)
         ->  Aggregate  (cost=1715.31..1715.32 rows=1 width=8)
               ->  Append  (cost=0.00..1715.00 rows=61 width=0)
                     ->  Seq Scan on rank_1_prt_boys rank  (cost=0.00..857.50 rows=31 width=0)
                           Filter: gender = 'M'::bpchar
                     ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..857.50 rows=31 width=0)
                           Filter: gender = 'M'::bpchar
(8 rows)


Time: 17.762 ms
tank=# select count(*) from rank where gender='M';
 count  
--------
 299997
(1 row)


Time: 261.716 ms
tank=# insert into rank values(generate_series(1,9999998),1, 2019, 'F',34);
INSERT 0 9999998
Time: 30387.764 ms
tank=# SELECT gp_segment_id, count(1) FROM rank GROUP BY gp_segment_id;
 gp_segment_id |  count  
---------------+---------
             1 | 5699993
             0 | 5699999
(2 rows)


Time: 1686.161 ms
tank=# select count(*) from rank where gender='M';
 count  
--------
 299997
(1 row)


Time: 266.670 ms
tank=# select count(*) from rank where gender='F';
  count   
----------
 10099997
(1 row)


Time: 1872.272 ms
tank=# 

多级别分区设计:

Greenplum数据库多级别分区表测试

1、新建一个多级别分区表(第一级别按年分区、第二级别按月分区,第三级别按列表分区)
tank=# CREATE TABLE sales (id int, year int, month int, day int, region text)
tank-# DISTRIBUTED BY (id)
tank-# PARTITION BY RANGE (year)
tank-# SUBPARTITION BY RANGE (month)
tank-# SUBPARTITION TEMPLATE (
tank(# START (1) END (13) EVERY (1),
tank(# DEFAULT SUBPARTITION other_months )
tank-# SUBPARTITION BY LIST (region)
tank-# SUBPARTITION TEMPLATE (
tank(# SUBPARTITION usa VALUES ('usa'),
tank(# SUBPARTITION europe VALUES ('europe'),
tank(# SUBPARTITION asia VALUES ('asia'),
tank(# DEFAULT SUBPARTITION other_regions )
tank-# ( START (2017) END (2018) EVERY (1),
tank(# DEFAULT PARTITION outlying_years );
NOTICE:  CREATE TABLE will create partition "sales_1_prt_outlying_years" for table "sales"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_outlying_years_2_prt_other_months" for table "sales_1_prt_outlying_years"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_outlying_years_2_prt_other_months_3_prt_usa" for table "sales_1_prt_outlying_years_2_prt_other_months"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_outlying_years_2_prt_other_months_3_prt_europe" for table "sales_1_prt_outlying_years_2_prt_other_months"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_outlying_years_2_prt_other_months_3_prt_asia" for table "sales_1_prt_outlying_years_2_prt_other_months"
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_12_3_prt_usa" for table "sales_1_prt_2_2_prt_12"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_12_3_prt_europe" for table "sales_1_prt_2_2_prt_12"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_12_3_prt_asia" for table "sales_1_prt_2_2_prt_12"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_12_3_prt_other_regions" for table "sales_1_prt_2_2_prt_12"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_13" for table "sales_1_prt_2"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_13_3_prt_usa" for table "sales_1_prt_2_2_prt_13"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_13_3_prt_europe" for table "sales_1_prt_2_2_prt_13"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_13_3_prt_asia" for table "sales_1_prt_2_2_prt_13"
NOTICE:  CREATE TABLE will create partition "sales_1_prt_2_2_prt_13_3_prt_other_regions" for table "sales_1_prt_2_2_prt_13"
CREATE TABLE
tank=# 


2、查统计表数据量


tank=# select count(*) from sales ;
  count   
----------
 25279900
(1 row)


Time: 2615.808 ms
tank=# 

3、查询2017年05月为aisa的数据库
tank=# select count(*) from sales where year=2017 and month=05  and region='asia' ;
 count  
--------
 200000
(1 row)


Time: 494.169 ms


4、查看执行计划


tank=# explain select count(*) from sales where year=2017 and month=05  and region='asia' ;
                                                                  QUERY PLAN                             
                                      
---------------------------------------------------------------------------------------------------------
--------------------------------------
 Aggregate  (cost=6666.09..6666.10 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=6666.02..6666.07 rows=1 width=8)
         ->  Aggregate  (cost=6666.02..6666.03 rows=1 width=8)
               ->  Append  (cost=0.00..6666.00 rows=3 width=0)
                     ->  Seq Scan on sales_1_prt_outlying_years_2_prt_other_months_3_prt_asia sales  (cos
t=0.00..833.25 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_outlying_years_2_prt_other_mont_3_prt_other_regions sale
s  (cost=0.00..833.25 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_outlying_years_2_prt_6_3_prt_asia sales  (cost=0.00..833
.25 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_outlying_years_2_prt_6_3_prt_other_regions sales  (cost=
0.00..833.25 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_2_2_prt_other_months_3_prt_asia sales  (cost=0.00..833.2
5 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_2_2_prt_other_months_3_prt_other_regions sales  (cost=0.
00..833.25 rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_2_2_prt_6_3_prt_asia sales  (cost=0.00..833.25 rows=1 wi
dth=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
                     ->  Seq Scan on sales_1_prt_2_2_prt_6_3_prt_other_regions sales  (cost=0.00..833.25 
rows=1 width=0)
                           Filter: year = 2017 AND month = 5 AND region = 'asia'::text
 Optimizer status: legacy query optimizer
(21 rows)


Time: 561.634 ms
tank=# ^C
tank=# 
添加子分区及删除了分区操作:

tank=# create table rank(id int,year int,gender char(1))distributed by (id)
tank-# PARTITION BY LIST(gender)
tank-# (PARTITION girls VALUES('F'),
tank(# PARTITION boys VALUES('M'),
tank(# DEFAULT PARTITION other);
NOTICE:  CREATE TABLE will create partition "rank_1_prt_girls" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_boys" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_other" for table "rank"
CREATE TABLE


tank=#                  
insert into rank values(generate_series(1,99999), 2008, 'F');
INSERT 0 99999
tank=#                  
insert into rank values(generate_series(1,99999), 2007, 'M');
INSERT 0 99999
tank=#                  
insert into rank values(generate_series(1,99999), 2007, 'O');
INSERT 0 99999

tank=# explain select count(*) from rank where  gender='F';
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Aggregate  (cost=1977.92..1977.93 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=1977.86..1977.91 rows=1 width=8)
         ->  Aggregate  (cost=1977.86..1977.87 rows=1 width=8)
               ->  Append  (cost=0.00..1977.50 rows=48 width=0)
                     ->  Seq Scan on rank_1_prt_girls rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'F'::bpchar
                     ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'F'::bpchar
 Optimizer status: legacy query optimizer
(9 rows)


tank=# ^C
tank=# 


1、添加一个范围分区:

提示存在default partition 需要分裂defautl分区
tank=# alter table rank add partition kkk values('K');
ERROR:  cannot add LIST partition "kkk" to relation "rank" with DEFAULT partition "other"
HINT:  need to SPLIT partition "other"

tank=# alter table rank split default partition at ('K') into (partition kb, partition other)
;
NOTICE:  exchanged partition "other" of relation "rank" with relation "pg_temp_30590"
NOTICE:  dropped partition "other" for relation "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_kb" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_other" for table "rank"
ALTER TABLE
tank=# 

tank=# insert into rank values(generate_series(1,99999), 2017, 'k');
INSERT 0 99999
tank=# select count(*) from rank where  gender='k';
 count 
-------
 99999
(1 row)


tank=# explain select count(*) from rank where  gender='k';
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Aggregate  (cost=989.00..989.01 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=988.93..988.98 rows=1 width=8)
         ->  Aggregate  (cost=988.93..988.94 rows=1 width=8)
               ->  Append  (cost=0.00..988.75 rows=24 width=0)
                     ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'k'::bpchar
 Optimizer status: legacy query optimizer
(7 rows)

tank=# select count(*) from rank where  gender='O';
 count 
-------
 99999
(1 row)


tank=# alter table rank split default partition at ('O') into (partition Ob, partition other)
;
NOTICE:  exchanged partition "other" of relation "rank" with relation "pg_temp_30590"
NOTICE:  dropped partition "other" for relation "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_ob" for table "rank"
NOTICE:  CREATE TABLE will create partition "rank_1_prt_other" for table "rank"
ALTER TABLE
tank=# select count(*) from rank where  gender='O';
 count 
-------
 99999
(1 row)


tank=# explain select count(*) from rank where  gender='O';
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Aggregate  (cost=1977.92..1977.93 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=1977.86..1977.91 rows=1 width=8)
         ->  Aggregate  (cost=1977.86..1977.87 rows=1 width=8)
               ->  Append  (cost=0.00..1977.50 rows=48 width=0)
                     ->  Seq Scan on rank_1_prt_ob rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'O'::bpchar
                     ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'O'::bpchar
 Optimizer status: legacy query optimizer
(9 rows)

tank=# insert into rank values(generate_series(1,99999), 2017, 'H');
INSERT 0 99999
tank=# explain select count(*) from rank where  gender='H';
                                           QUERY PLAN                                           
------------------------------------------------------------------------------------------------
 Aggregate  (cost=989.00..989.01 rows=1 width=8)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=988.93..988.98 rows=1 width=8)
         ->  Aggregate  (cost=988.93..988.94 rows=1 width=8)
               ->  Append  (cost=0.00..988.75 rows=24 width=0)
                     ->  Seq Scan on rank_1_prt_other rank  (cost=0.00..988.75 rows=24 width=0)
                           Filter: gender = 'H'::bpchar
 Optimizer status: legacy query optimizer
(7 rows)

tank=# truncate table rank_1_prt_ob ;
TRUNCAT
tank=# 
tank=# 
tank=# select count(*) from rank where  gender='O';
 count 
-------
     0
(1 row)

阅读(4489) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~