In this article, we will be highlighting the advantages of hierarchical state
machine design over conventional state machine design.
In conventional state machine design, all states are considered at the same
level. The design does not capture the commonality that exists among states. In
real life, many states handle most messages in similar fashion and differ
only in handling of few key messages. Even when the actual handling differs,
there is still some commonality. Hierarchical state machine design captures the
commonality by organizing the states as a hierarchy. The states at the higher
level in hierarchy perform the common message handling, while the lower level
states inherit the commonality from higher level ones and perform the state
specific functions. The table given below shows the mapping between conventional
states and their hierarchical counterparts for a typical call state machine.
Conventional States |
Hierarchical States |
Awaiting First Digit |
Setup.CollectingDigits.AwaitingFirstDigit |
Collecting Digits |
Setup.CollectingDigits.AwaitingSubsequent Digits |
Routing Call |
Setup.RoutingCall |
Switching Path |
Setup.SwitchingPath |
Conversation |
Conversation |
Awaiting Onhook |
Releasing.AwaitingOnhook |
Releasing Path |
Releasing.ReleasingPath |
A conventional state machine is designed as a two dimensional array
with one dimension as the state and the other dimension specifying the message
to be handled. The state machine determines the message handler to be called by
indexing with the current state and the received message. In real life scenario,
a task usually has a number of states along with many different types of input
messages. This leads to a message handler code explosion. Also, a huge two
dimensional array needs to be maintained. Hierarchical state machine design
avoids this problem by recognizing that most states differ in the handling of
only a few messages. When a new hierarchical state is defined, only the state
specific handlers need to be specified.
Conventional State Machine Example
The figure below describes the state transition diagram for an active standby
pair. The design here assumes that the active and standby are being managed by
an external entity.
The different states for the state machine are Active, Standby, Suspect and
Failed. The input messages to be handled are Switchover, Fault Trigger,
Diagnostics Passed, Diagnostics Failed and Operator Inservice. Thus the handler
two dimensional array is 4 x 5 i.e. 20 handlers need to be managed.
The code below shows the handlers that need to be defined. A dummy "do
nothing" handler should be specified for all other entries of the two
dimensional state table. This simple example clearly illustrates the problem
with conventional state design. There is a lot of code repetition between
handlers. This creates a maintenance headache for state machine designers. We
will see in the following section that hierarchical state machine design
exploits these very similarities to implement a more elegant state structure.
|
/* == Active State Handlers == */ void ActiveStateFaultTriggerHandler(Msg *pMsg) { PerformSwitchover(); // Perform Switchover, as active failed NextState = SUSPECT; // Run diagnostics to confirm fault SendDiagnosticsRequest(); RaiseAlarm(LOSS_OF_REDUNDANCY); // Report loss of redundancy to operator } void ActiveStateSwitchoverHandler(Msg *pMsg) { PerformSwitchover(); // Perform Switchover on operator command CheckMateStatus(); // Check if switchover completed SendSwitchoverResponse(); // Inform operator about switchover NextState = STANDBY; // Transition to standby }
/* == Standby State Handlers == */ void StandbyStateFaultTriggerHandler(Msg *pMsg) { NextState = SUSPECT; // Run diagnostics to confirm fault SendDiagnosticsRequest(); RaiseAlarm(LOSS_OF_REDUNDANCY); // Report loss of redundancy to operator }
void StandbyStateSwitchoverHandler(Msg *pMsg) { PerformSwitchover(); // Perform switchover on operator command CheckMateStatus(); // Check if switchover completed SendSwitchoverResponse(); // Inform operator about switchover NextState = ACTIVE; // Transition to active }
/* == Suspect State Handlers == */ void SuspectStateDiagnosticsFailedHandler(Msg *pMsg) { SendDiagnosticsFailureReport(); // Inform operator about diagnostics NextState = FAILED; // Move to the failed state }
void SuspectStateDiagnosticsPassedHandler(Msg *pMsg) { SendDiagnosticsPassReport(); // Inform operator about diagnostics ClearAlarm(LOSS_OF_REDUNDANCY); // Clear loss of redundancy alarm NextState = STANDBY; // Move to standby state }
void SuspectStateOperatorInservice(Msg *pMsg) { // Operator has replaced the card, so abort the current diagnostics // and restart new diagnostics on the replaced card. AbortDiagostics(); SendDiagnosticsRequest(); // Run diagnostics on replaced card SendOperatorInserviceResponse(); // Inform operator about diagnostics start } /* == Failed State Handlers == */ void FailedStateOperatorInservice(Msg *pMsg) { SendDiagnosticsRequest(); // Run diagnostics on replaced card SendOperatorInserviceResponse(); // Inform operator about diagnostics start NextState = SUSPECT; // Move to suspect state for diagnostics }
|
Hierarchical State Machine Example
The following state transition diagram recasts the state machine by
introducing two levels in the hierarchy. Inservice and Out_Of_Service are the high
level states that capture the common message handling. Active and Standby states
are low level states inheriting from Inservice state. Suspect and Failed are low
level states inheriting from Out_Of_Service state.
The following diagram clearly illustrates the state hierarchy. Even the
Inservice and Out_Of_Service, high level states inherit from the Unit_State that is
at the highest level.
Hierarchical State Machine Source Code
The C++ implementation details of the hierarchical state machine are given
below. It is apparent that all the commonality has moved to the high level
states viz. Inservice and Out_Of_Service. Also, contrast this with the .
The code below contains hyperlinks to more detailed information about the
classes, methods and variables in this information.
Header File
The header file below declares the Unit state machine using the
class. Important points to note are:
- The state classes are nested private classes within the state machine
class. Thus they are not visible to other classes.
- The state machine declares all states to be friend classes. This does not
break the encapsulation as only a private class is being declared as a friend.
- The base class ()
provides a "do nothing" implementation for all handlers. Thus an inheriting
state has to provide an implementation only for that methods it supports.
- State objects are declared static. Thus multiple instances of the state
machine will share the same state objects. Due to this, the
class has a small memory footprint.
- Only the main message handler, , is declared public. All helper functions are private.
- A pointer to the current state is maintained in p_Current_State variable.
This variable gets initialized using the method.
Hierarchical_State_Machine.h |
00001 00002 class Message; 00009 00010 00011 00031 class 00033 { 00037 class 00039 { 00040 public: 00041 virtual void ( &u, const Message *p_Message) {} 00044 virtual void ( &u, const Message *p_Message) {} 00047 virtual void ( &u, const Message *p_Message) {} 00050 virtual void ( &u, const Message *p_Message) {} 00053 virtual void ( &u, const Message *p_Message) {} 00056 }; 00057 friend Unit_State; 00058 00059 00062 class : public 00064 { 00065 public: 00066 void ( &u, const Message *p_Message); 00067 void ( &u, const Message *p_Message); 00068 }; 00069 friend ; 00070 00075 class : public 00077 { 00078 public: 00079 void ( &u, const Message *p_Message); 00080 void ( &u, const Message *p_Message); 00081 }; 00082 friend ; 00083 00088 class : public 00090 { 00091 public: 00092 void ( &u, const Message *p_Message); 00093 }; 00094 friend ; 00095 00098 class : public 00100 { 00101 public: 00102 void ( &u, const Message *p_Message); 00103 }; 00104 friend ; 00105 class : public 00110 { 00111 public: 00112 void ( &u, const Message *p_Message); 00113 void ( &u, const Message *p_Message); 00114 void ( &u, const Message *p_Message); 00115 }; 00116 friend ; 00117 class : public 00122 { 00123 public: 00124 00125 }; 00126 friend ; 00127 00128 private: static ; static ; static ; static ; 00133 00134 void ( &r_State); 00135 00136 00137 00138 00139 virtual void Send_Diagnostics_Request(); 00140 virtual void Raise_Alarm(int reason); 00141 virtual void Clear_Alarm(int reason); 00142 virtual void Perform_Switchover(); 00143 00144 virtual void Send_Switchover_Response(); 00145 virtual void Send_Operator_Inservice_Response(); 00146 virtual void Send_Diagnostics_Failure_Report(); 00147 virtual void Send_Diagnostics_Pass_Report(); 00148 virtual void Abort_Diagnostics(); 00149 virtual void Check_Mate_Status(); 00150 *p_Current_State; 00151 00152 public: 00153 void (const Message *p_Message); 00154 }; 00155 00159 void ( &r_State) 00161 { 00162 p_Current_State = &r_State; 00163 } 00164 00165
|
Source File
Important things to note about the source file:
- , the main message handler invokes the appropriate handler based
on the type of the message. The message is passed to the current state object.
- The
and
base states handle most of the message processing. In some cases, the
inheriting states perform some additonal action and call the handler for the
base state for the common part of the handling.
Hierarchical_State_Machine.cpp |
00007 00008 #include "" 00009 #include "Unit_Messages.h" 00010 #include "assert.h" 00011 00016 void (const Message *p_Message) 00018 { 00019 switch (p_Message->GetType()) 00020 { 00021 case Message::FAULT_TRIGGER: 00022 p_Current_State->(*this, p_Message); 00023 break; 00024 00025 case Message::SWITCHOVER: 00026 p_Current_State->(*this, p_Message); 00027 break; 00028 00029 case Message::DIAGNOSTICS_PASSED: 00030 p_Current_State->(*this, p_Message); 00031 break; 00032 00033 case Message::DIAGNOSTICS_FAILED: 00034 p_Current_State->(*this, p_Message); 00035 break; 00036 00037 case Message::OPERATOR_INSERVICE: 00038 p_Current_State->(*this, p_Message); 00039 break; 00040 00041 default: 00042 assert(false); 00043 break; 00044 } 00045 } 00046 00055 void ( &u, const Message *p_Message) 00057 { 00058 u.(u.); 00059 u.(); 00060 u.(LOSS_OF_REDUNDANCY); 00061 } 00062 00070 void ( &u, const Message *p_Message) 00072 { 00073 u.(); 00074 u.(); 00075 u.(); 00076 } 00077 00088 void ( &u, const Message *p_Message) 00090 { 00091 u.(); 00092 Inservice::On_Fault_Trigger(u, p_Message); 00093 } 00094 00100 void ( &u, const Message *p_Message) 00102 { 00103 Inservice::On_Switchover(u, p_Message); 00104 u.(u.); 00105 } 00106 00112 void ( &u, const Message *p_Message) 00114 { 00115 Inservice::On_Switchover(u, p_Message); 00116 u.(u.); 00117 } 00118 00127 void ( &u, const Message *p_Message) 00129 { 00130 00131 00132 u.(); 00133 u.(); 00134 u.(u.); 00135 } 00136 00142 void ( &u, const Message *p_Message) 00144 { 00145 u.(); 00146 u.(u.); 00147 } 00148 00155 void ( &u, const Message *p_Message) 00157 { 00158 u.(); 00159 u.(LOSS_OF_REDUNDANCY); 00160 u.(u.); 00161 } 00162 00167 void ( &u, const Message *p_Message) 00169 { 00170 u.(); 00171 Out_Of_Service::On_Operator_Inservice(u, p_Message); 00172 }
|
阅读(1877) | 评论(0) | 转发(0) |