如今,似乎每个人都在谈论人工智能,很多讨论都围绕着大型语言模型 (LLM),例如 和 Bard。如果您的公司开发 API 产品,那么人工智能可以使它们更可靠、更高效、更安全、更有利可图。如果您想使用人工智能开发更好的 API,那么 API 测试是一个很好的起点。
通过 API 测试开始您的 AI 之旅
测试通常发生在 API 构建过程的{BANNED}最佳后阶段,那么为什么要从那里开始您的 AI 之旅呢?这样,您就可以将 AI 的使用重点放在基础知识和实验上,而不会损害 API 的质量或性能。
基本面是什么?
API 测试的基本原理强化了这一理念——测试必不可少,测试越多意味着 API 产品越好。然而,测试也会给许多公司带来瓶颈和成本中心。许多 API 团队知道他们应该进行更多测试,但却很难投入资源。API 测试是提高效率的主要目标——而 AI 可以提供帮助!
你需要尝试什么
当您开始使用 AI 时,您不会知道要使用哪些正确的工具以及要遵循哪些{BANNED}最佳佳实践。AI 对您和 API 测试团队的每个人来说都是新事物,因此实验是唯一的出路。从 API 测试等范围明确的领域开始是有意义的。虽然AI 对您来说可能是新事物,但测试的挑战却并非如此,因此您会知道 AI 何时在过程中发挥良好作用。鼓励使用 AI 进行实验的一个好方法是使用“4P”。
应用4P框架
斯科特·贝尔斯基 (Scott Belsky) 是一位高管、作家、投资者和企业家,因共同创办 Behance 而闻名,他{BANNED}最佳近在 LinkedIn 上发布了他的团队如何开始使用人工智能的文章。他的策略是一个他称之为“4P”的框架,你可以将它应用于整个企业的团队,包括 API 测试团队:
-
发挥 —让您的 API 测试团队能够使用新的 AI 技术和工具,让他们可以尝试这些技术和工具,尽管存在任何潜在风险。另外,不要指望天高地厚。让您的团队自己摸索。
-
试点 —从试点项目开始,团队可以将 AI 应用于 API 测试的一个领域并从中学习。试点项目成功后,让团队将 AI 应用于更多测试领域。
-
保护 —确保试点项目的目标或 KPI 鼓励试验。增加收入或转化率不是这里的目标。目标是学习。
-
激发 —邀请 API 利益相关者提出有关在测试过程中使用 AI 的棘手问题。他们可能会质疑 AI 在 API 测试中的道德性或投资回报率。回答棘手的问题可以帮助您在创新时避免代价高昂的错误。
4P 框架可以帮助您了解如何在 API 测试中{BANNED}最佳佳地使用 AI。对于大多数公司而言,AI 的{BANNED}最佳终目标是提高人类效率,而 API 测试是开始学习如何做到这一点的绝佳起点。让我们来看看 AI 可以提供帮助的几种方式。
提升现有的 API 测试实践
AI 是一个很棒的工具,但您的 API 测试流程中仍需要人为干预。API 团队可以先使用 AI 来提升现有的测试实践。尝试使用 AI 来改进用于 API 测试不同领域的数据:
-
API 测试规划 —您可以使用 LLM 来帮助您创建 API 测试计划。OpenAPI 已使用大量网络数据对 ChatGPT 进行了训练 — 您可以利用这些数据来制定更好的 API 测试计划。您可以输入一些 API 测试要求和 API 组件的一些详细信息,让 ChatGPT 生成包含设置说明和多个测试用例的测试计划。
-
测试用例 —将一些示例测试用例输入 LLM,并要求其创建更多。向 ChatGPT 或 Bard 提供一些带有防护栏的提示,它可以生成更真实的 API 测试用例和复杂测试用例。LLM 还可以找到您的 API 团队可能没有考虑到的极端情况。
-
API 测试 —借助 AI,您可以根据数据格式和真实场景的叙述性描述动态生成 API 测试。您可以使用 LLM 创建基于领域专家知识的测试。基于 NLP 的 AI 可以理解自然语言测试要求并将其转换为可执行的测试脚本,从而使非技术利益相关者更容易参与 API 测试工作。
一旦您开始将 AI 融入到一些现有的 API 测试实践中,您就可以开始利用 AI 来更大规模地自动化一些测试流程。
自动化 API 测试流程以获得更好的覆盖率
如果您希望获得更好的测试覆盖率和扩展能力,您将需要自动化一些测试流程 — 而这正是 AI 的闪光点!AI 使您能够自动执行各种任务,从测试脚本的创建和执行到测试报告和测试环境管理。
-
测试用例生成 — AI 可以比人类更快、更准确地分析用户行为、API 流程和代码结构。AI 收集和分析数据,为各种场景和边缘情况生成测试用例。使用 AI 算法分析 API 规范(例如OpenAPI 文档),并根据预期的输入、输出和端点自动生成测试用例。这可以显著减少创建测试用例所需的手动工作量,并且与手动生成测试用例相比,您可以获得更广泛的可能场景。
-
测试执行和报告——人工智能驱动的测试自动化框架可以执行测试用例、监控响应并将其与预期结果进行比较。人工智能可以检测与预期行为的偏差并报告异常,从而让团队能够相应地测试 API。人工智能非常适合生成包含图表和图形的测试报告。报告可帮助团队成员和其他利益相关者了解 API 测试工作的影响。
-
测试脚本维护 —您可以使用基于 AI 的 API 测试解决方案进行智能测试脚本维护。当 API 代码发生变化时,AI 辅助测试脚本维护工具将编辑和完善现有测试脚本,确保您的测试脚本随 API 一起发展。这减少了使测试适应不断发展的 API 所需的工作量。
-
测试环境管理——AI可以通过配置资源、配置数据库和自动化 API 测试部署流程来帮助设置和管理测试环境。它可以确保测试环境具有真实的数据,并允许您随着需求的增长自动扩展 API 测试。一些基于 AI 的 API 测试工具还将自动安排、请求和预订测试环境。
当您准备将更多工作委托给 AI 或想要进行更大规模的测试时,这些商业和开源 AI 驱动的工具可能有助于实现 API 测试的自动化:
-
Functionize – 商业
-
Katalon——商业版,免费计划
-
Loadmill——商业版,免费试用
-
Mabl——商业
-
Postman – 商业版,免费计划
-
ReadyAPI(由 Stoplight 的新母公司 SmartBear 提供)– 商业版,免费试用
-
SoapUI(由 SmartBear 支持)– 开源
-
Testim – 商业、无社区计划
-
Testsigma – 商业、开源
因此,您已经应用了 4P,升级了现有流程,并自动化了一些 API 测试实践。不要止步于此!吸取您学到的 AI 经验教训,并利用它们来确保所有 API 的安全性和可靠性。
使用 AI 预测 API 故障点和漏洞
测试属于安全性和可靠性范畴,因此您应该使用 AI 加强 API 测试工作。使用 AI 可以从不同的角度了解问题所在。您可以使用 AI 进行测试以增强 API 安全性和可靠性,方法包括:
-
预测分析——AI可以分析来自各种来源的数据(历史测试结果、API 日志、代码更改、用户反馈、错误报告),以识别 API 性能的模式或趋势。此分析可帮助测试人员预测潜在的 API 问题并确定测试工作的优先级,从而提供更安全、更可靠的 API。
-
安全测试 —您可以使用 AI 通过分析 API 请求和响应数据中是否存在可疑模式或行为来识别 API 中的安全漏洞,例如SQL 注入或 XSS 攻击。LLM 可以提供真实场景作为 API 渗透测试的基础,而 AI 可以帮助您自动创建这些测试。
-
负载测试 —基于 AI 的负载测试工具可以模拟数千个并发 API 请求,并根据系统行为动态调整负载级别。这有助于识别性能瓶颈和可扩展性问题。对许多不同的 API(包括 REST、RPC、和超媒体)使用 AI 驱动的负载测试。
-
异常检测 —使用 AI 持续监控生产中的 API 行为,并识别异常模式或与预期行为的偏差,帮助实时检测问题。AI 还可以检测 API 测试结果中的异常,从而发现错误或错误。
AI 非常适合分析数据和预测模式,因此使用它来查找潜在的 API 安全漏洞和故障点是有意义的。
AI + API 测试=为每个人提供更好的 API
AI 并非全是炒作——它是一种强大的工具,可以帮助您构建更好的 API。跟随 Martin Fowler 等行业专家的脚步,他们大胆展示了 AI 在编程中的可能性,例如自我测试代码。当您将 AI 纳入测试流程时,您可以确保您制作的每个 API 产品的安全性、性能和可靠性。
文章来源:https://www.explinks.com/blog/build-better-apis-with-ai-powered-testing-tools/