Chinaunix首页 | 论坛 | 博客
  • 博客访问: 81969
  • 博文数量: 165
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 1655
  • 用 户 组: 普通用户
  • 注册时间: 2022-09-26 14:37
文章分类

全部博文(165)

文章存档

2024年(2)

2023年(95)

2022年(68)

我的朋友

分类: Java

2023-02-08 10:50:20

作者:京东科技 张天赐

前言

JDK 8 是一次重大的版本升级,新增了非常多的特性,其中之一便是 CompletableFuture。自此从 JDK 层面真正意义上的支持了基于事件的异步编程范式,弥补了 Future 的缺陷。

在我们的日常优化中,{BANNED}最佳常用手段便是多线程并行执行。这时候就会涉及到 CompletableFuture 的使用。

常见使用方式

下面举例一个常见场景。

假如我们有两个 RPC 远程调用服务,我们需要获取两个 RPC 的结果后,再进行后续逻辑处理。

public static void main(String[] args) { // 任务 A,耗时 2 秒 int resultA = compute(1); // 任务 B,耗时 2 秒 int resultB = compute(2); // 后续业务逻辑处理 System.out.println(resultA + resultB);
} 

可以预估到,串行执行{BANNED}最佳少耗时 4 秒,并且 B 任务并不依赖 A 任务结果。

对于这种场景,我们通常会选择并行的方式优化,Demo 代码如下:

public static void main(String[] args) { // 仅简单举例,在生产代码中可别这么写! // 统计耗时的函数 time(() -> {
        CompletableFuture result = Stream.of(1, 2) // 创建异步任务 .map(x -> CompletableFuture.supplyAsync(() -> compute(x), executor)) // 聚合 .reduce(CompletableFuture.completedFuture(0), (x, y) -> x.thenCombineAsync(y, Integer::sum, executor)); // 等待结果 try {
            System.out.println("结果:" + result.get());
        } catch (ExecutionException | InterruptedException e) {
            System.err.println("任务执行异常");
        }
    });
}

输出:
[async-1]: 任务执行开始:1 [async-2]: 任务执行开始:2 [async-1]: 任务执行完成:1 [async-2]: 任务执行完成:2 结果:3 耗时:2

可以看到耗时变成了 2 秒。

存在的问题

分析

看上去 CompletableFuture 现有功能可以满足我们诉求。但当我们引入一些现实常见情况时,一些潜在的不足便暴露出来了。

compute(x) 如果是一个根据入参查询用户某类型优惠券列表的任务,我们需要查询两种优惠券并组合在一起返回给上游。假如上游要求我们 2 秒内处理完毕并返回结果,但 compute(x) 耗时却在 0.5 秒 ~ 无穷大波动。这时候我们就需要把耗时过长的 compute(x) 任务结果放弃,仅处理在指定时间内完成的任务,尽可能保证服务可用。

那么以上代码的耗时由耗时{BANNED}最佳长的服务决定,无法满足现有诉求。通常我们会使用 get(long timeout, TimeUnit unit) 来指定获取结果的超时时间,并且我们会给 compute(x) 设置一个超时时间,达到后自动抛异常来中断任务。

public static void main(String[] args) { // 仅简单举例,在生产代码中可别这么写! // 统计耗时的函数 time(() -> {
        List> result = Stream.of(1, 2) // 创建异步任务,compute(x) 超时抛出异常 .map(x -> CompletableFuture.supplyAsync(() -> compute(x), executor))
                                                        .toList(); // 等待结果 int res = 0; for (CompletableFuture future : result) { try {
                res += future.get(2, SECONDS);
            } catch (ExecutionException | InterruptedException | TimeoutException e) {
                System.err.println("任务执行异常或超时");
            }
        }

        System.out.println("结果:" + res);
    });
}

输出:
[async-2]: 任务执行开始:2 [async-1]: 任务执行开始:1 [async-1]: 任务执行完成:1 任务执行异常或超时
结果:1 耗时:2

可以看到,只要我们能够给 compute(x) 设置一个超时时间将任务中断,结合 get、getNow 等获取结果的方式,就可以很好地管理整体耗时。

那么问题也就转变成了,如何给任务设置异步超时时间呢

现有做法

当异步任务是一个 RPC 请求时,我们可以设置一个 JSF 超时,以达到异步超时效果。

当请求是一个 R2M 请求时,我们也可以控制 R2M 连接的{BANNED}最佳大超时时间来达到效果。

这么看好像我们都是在依赖三方中间件的能力来管理任务超时时间?那么就存在一个问题,中间件超时控制能力有限,如果异步任务是中间件 IO 操作 + 本地计算操作怎么办?

用 JSF 超时举一个具体的例子,反编译 JSF 的获取结果代码如下:

public V get(long timeout, TimeUnit unit) throws InterruptedException { // 配置的超时时间 timeout = unit.toMillis(timeout); // 剩余等待时间 long remaintime = timeout - (this.sentTime - this.genTime); if (remaintime <= 0L) { if (this.isDone()) { // 反序列化获取结果 return this.getNow();
        }
    } else if (this.await(remaintime, TimeUnit.MILLISECONDS)) { // 等待时间内任务完成,反序列化获取结果 return this.getNow();
    } this.setDoneTime(); // 超时抛出异常 throw this.clientTimeoutException(false);
} 

当这个任务刚好卡在超时边缘完成时,这个任务的耗时时间就变成了超时时间 + 获取结果时间。而获取结果(反序列化)作为纯本地计算操作,耗时长短受 CPU 影响较大。

某些 CPU 使用率高的情况下,就会出现异步任务没能触发抛出异常中断,导致我们无法准确控制超时时间。对上游来说,本次请求全部失败。

解决方式

JDK 9

这类问题非常常见,如大促场景,服务器 CPU 瞬间升高就会出现以上问题。

那么如何解决呢?其实 JDK 的开发大佬们早有研究。在 JDK 9,CompletableFuture 正式提供了 orTimeout、completeTimeout 方法,来准确实现异步超时控制。

public CompletableFuture orTimeout(long timeout, TimeUnit unit) { if (unit == null) throw new NullPointerException(); if (result == null)
        whenComplete(new Canceller(Delayer.delay(new Timeout(this), timeout, unit))); return this;
} 

JDK 9 orTimeout 其实现原理是通过一个定时任务,在给定时间之后抛出异常。如果任务在指定时间内完成,则取消抛异常的操作。

以上代码我们按执行顺序来看下:

首先执行 new Timeout(this)。

static final class Timeout implements Runnable { final CompletableFuture f;
    Timeout(CompletableFuture f) { this.f = f; } public void run() { if (f != null && !f.isDone()) // 抛出超时异常 f.completeExceptionally(new TimeoutException());
    }
} 

通过源码可以看到,Timeout 是一个实现 Runnable 的类,run() 方法负责给传入的异步任务通过 completeExceptionally CAS 赋值异常,将任务标记为异常完成。

那么谁来触发这个 run() 方法呢?我们看下 Delayer 的实现。

static final class Delayer { static ScheduledFuture delay(Runnable command, long delay,
                                    TimeUnit unit) { // 到时间触发 command 任务 return delayer.schedule(command, delay, unit);
    } static final class DaemonThreadFactory implements ThreadFactory { public Thread newThread(Runnable r) {
            Thread t = new Thread(r);
            t.setDaemon(true);
            t.setName("CompletableFutureDelayScheduler"); return t;
        }
    } static final ScheduledThreadPoolExecutor delayer; static {
        (delayer = new ScheduledThreadPoolExecutor( 1, new DaemonThreadFactory())). setRemoveOnCancelPolicy(true);
    }
} 

Delayer 其实就是一个单例定时调度器,Delayer.delay(new Timeout(this), timeout, unit) 通过 ScheduledThreadPoolExecutor 实现指定时间后触发 Timeout 的 run() 方法。

到这里就已经实现了超时抛出异常的操作。但当任务完成时,就没必要触发 Timeout 了。因此我们还需要实现一个取消逻辑。

static final class Canceller implements BiConsumer<Object, Throwable> {
    final Future f; Canceller(Future f) { this.f = f; } public void accept(Object ignore, Throwable ex) { if (ex == null && f != null && !f.isDone()) // 3 未触发抛异常任务则取消 f.cancel(false);
    }
} 

当任务执行完成,或者任务执行异常时,我们也就没必要抛出超时异常了。因此我们可以把 delayer.schedule(command, delay, unit) 返回的定时超时任务取消,不再触发 Timeout。 当我们的异步任务完成,并且定时超时任务未完成的时候,就是我们取消的时机。因此我们可以通过 whenComplete(BiConsumer action) 来完成。

Canceller 就是一个 BiConsumer 的实现。其持有了 delayer.schedule(command, delay, unit) 返回的定时超时任务,accept(Object ignore, Throwable ex) 实现了定时超时任务未完成后,执行 cancel(boolean mayInterruptIfRunning) 取消任务的操作。

JDK 8

如果我们使用的是 JDK 9 或以上,我们可以直接用 JDK 的实现来完成异步超时操作。那么 JDK 8 怎么办呢?

其实我们也可以根据上述逻辑简单实现一个工具类来辅助。

以下是我们营销自己的工具类以及用法,贴出来给大家作为参考,大家也可以自己写的更优雅一些~

调用方式:

CompletableFutureExpandUtils.orTimeout(异步任务, 超时时间, 时间单位); 

工具类源码:

package com.jd.jr.market.reduction.util; import com.jdpay.market.common.exception.UncheckedException; import java.util.concurrent.*; import java.util.function.BiConsumer; /**
 * CompletableFuture 扩展工具
 *
 * @author zhangtianci7
 */ public class CompletableFutureExpandUtils { /**
     * 如果在给定超时之前未完成,则异常完成此 CompletableFuture 并抛出 {@link TimeoutException} 。
     *
     * @param timeout 在出现 TimeoutException 异常完成之前等待多长时间,以 {@code unit} 为单位
     * @param unit    一个 {@link TimeUnit},结合 {@code timeout} 参数,表示给定粒度单位的持续时间
     * @return 入参的 CompletableFuture
     */ public static  CompletableFuture orTimeout(CompletableFuture future, long timeout, TimeUnit unit) { if (null == unit) { throw new UncheckedException("时间的给定粒度不能为空");
        } if (null == future) { throw new UncheckedException("异步任务不能为空");
        } if (future.isDone()) { return future;
        } return future.whenComplete(new Canceller(Delayer.delay(new Timeout(future), timeout, unit)));
    } /**
     * 超时时异常完成的操作
     */ static final class Timeout implements Runnable { final CompletableFuture future;

        Timeout(CompletableFuture future) { this.future = future;
        } public void run() { if (null != future && !future.isDone()) {
                future.completeExceptionally(new TimeoutException());
            }
        }
    } /**
     * 取消不需要的超时的操作
     */ static final class Canceller implements BiConsumer { final Future future;

        Canceller(Future future) { this.future = future;
        } public void accept(Object ignore, Throwable ex) { if (null == ex && null != future && !future.isDone()) {
                future.cancel(false);
            }
        }
    } /**
     * 单例延迟调度器,仅用于启动和取消任务,一个线程就足够
     */ static final class Delayer { static ScheduledFuture delay(Runnable command, long delay, TimeUnit unit) { return delayer.schedule(command, delay, unit);
        } static final class DaemonThreadFactory implements ThreadFactory { public Thread newThread(Runnable r) { Thread t = new Thread(r);
                t.setDaemon(true);
                t.setName("CompletableFutureExpandUtilsDelayScheduler"); return t;
            }
        } static final ScheduledThreadPoolExecutor delayer; static {
            delayer = new ScheduledThreadPoolExecutor(1, new DaemonThreadFactory());
            delayer.setRemoveOnCancelPolicy(true);
        }
    }
} 

参考资料

阅读(252) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~