Chinaunix首页 | 论坛 | 博客
  • 博客访问: 122771
  • 博文数量: 165
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 1655
  • 用 户 组: 普通用户
  • 注册时间: 2022-09-26 14:37
文章分类

全部博文(165)

文章存档

2024年(2)

2023年(95)

2022年(68)

我的朋友

分类: 架构设计与优化

2023-02-02 13:16:34

作者:京东零售 谷伟

1.商品搜索

1.1网络购物的搜索手段

随着移动互联网发展,手机端购物已成为人们生活的常态。人们在搜索商品时采用的手段也越来越丰富,当前的主要搜索方式是文本搜索与拍照搜索。

1.2文本搜索

文本搜索应用比较广泛,较为常用的是关键字匹配,针对商品信息的相关描述进行分词,并对分词建立索引库,从而达到查找的目的。随着人工智能的发展,语义搜索得到了快速的发展,它通过用户输入的搜索内容来理解用户真正的意图,从而获得更有价值的内容。其本质是将所有要搜索的内容转化为高维数学向量,用统一的特征向量来描述不同内容,把检索输入的内容向量化,并与要搜索的内容进行向量匹配,把相似度{BANNED}最佳高的结果展现出来。

1.3拍照搜索

拍照搜索也就是以图搜图,是近几年的视觉AI发展的一个产物。用户登录电商平台,可以通过上传图片,经过图像分析与识别来查找相似的商品主图,从而找出相关的商品。其基本原理是经图像分析抽取图像的颜色、形状、纹理等特征,建立特征索引库,对用户上传的图像进行特征化描述,从索引库中查找出与之近似的特征图像。

2. 现状分析

2.1需要专业人员参与

文本搜索需要文本描述的支持,也就是需要对短视频进行文本描述,需要人员对短视频进行准确的文本描述,尤其描述中要含有代表其商品的关键词,否则可能难以被搜索引擎所命中,这对视频的发布人员产生了一定的门槛,增加搜索命中的难度。

拍照搜索主要是对商品的主图进行特征匹配,这也就需要商品发布人员要制作尽可能与之匹配的图片,尤其需要美工设计人员的参与,从而增加了人力成本。

2.2难以支持短视频搜索

随着近几年自媒体的发展,短视频逐渐成为互联网信息传播的主要手段。而短视频可以认为是大量图片的集合,不可能对短视频的每张图片建立特征索引,因为这会浪费大量的计算机算力。

3. 技术方案

3.1 技术问题

以前商品介绍主要以图文方式来展现商品,不仅要展示商品主图还要配细节图,以及产品参数,从而达到全面涵盖产品信息的能力。而短视频能够全方位的展示商品,并搭配语言描述以及背景音乐,可进一步形象的给消费者介绍商品的功能,给顾客更直观的体验,有助于促进下单。同时商家制作的短视频可将其推送到自媒体平台上,便于给商品引流,提高商品销量,从而拓宽了销售市场。

因此短视频营销相对于图文营销更有优势,如何让顾客能够更快更便捷地搜索到其感兴趣的商品短视频,是本发明所要解决的主要问题。本方案主要解决的是商品短视频搜索,按照类目维度对商品短视频进行筛选,并提高视频搜索的命中率,为商品短视频搜索建立桥梁。

3.2 技术方案

3.2.1 流程图

流程图:


3.2.2 详细描述

1.关键帧提取

卖家在制作好商品介绍的短视频后,在发布商品时对短视频进行上传,视频时长不能超过2分钟。对该视频进行关键帧提取。视频是由一组连续的图像组成,如果每张图片都存储下来,则会导致视频文件过大,因此视频都会被压缩,在压缩过程中,产生了I帧、P帧、B帧。I帧是画面的完整保存,它尽可能去除了图像空间的冗余信息;P帧则是记录与前一个关键帧的差别;B帧是记录本帧与上一帧和下一帧的差别。

因此只需提取出I帧即可。在MPEG-4标准中,stss部分标识了哪些sample是关键帧,如果没有stss则全部sample是关键帧。当获取的关键帧太多时,以时间轴维度,随机选取20帧的图像供商家选择,把商家选取的5张图片与视频文件一同保存到文件数据库中。

Mp4标准

Box类型 说明
ftyp 文件类型
moov 记录媒体信息
mvhd 视频文件信息,如时长、创建时间等
track 存放视频的容器
tkhd 媒体总体信息,如宽高等
mdia 媒体容器
mdhd 换算真实事件
hdlr 媒体类型,指明是video、audio、hint
minf 媒体信息容器
stbl 偏移映射关系表
stsd sample描述
stts 时戳-sample序号映射表
stsc sample与chunk的映射表
stsz sample的大小
stz2 另一种存储sample的大小,更节省空间
stss 关键帧列表(从该处获得I帧)
stco 每个chunk的偏移
co64 64位chunk的偏移
mdat 具体的媒体数据

2.特征向量计算

本次的特征向量计算采用的是VGG16模型。由于关键帧的图片都是彩色图片,因此采用3通道。卷积核为3×3,池化核为2×2。以224×224的视频图像为例,过程如下:

  1. 输入图像大小为224×224×3,经64个通道的卷积核3×3,步长为1,共卷积2次,输出尺寸为224×224×64的特征向量。进行池化,采用池化核2×2,步长为2,输出尺寸为112×112×64的特征向量。

  2. 经128个3×3的卷积核,步长为1,卷积2次,尺寸变为112×112×128,进行池化,步长为2,输出尺寸为56×56×128。

  3. 经256个3×3的卷积核,步长为1,卷积3次,尺寸变为56×56×256,进行池化,步长为2,输出尺寸为28×28×256。

  4. 经512个3×3的卷积核,步长为1,卷积3次,尺寸变为28×28×512,进行池化,步长为2,输出尺寸为14×14×256。

  5. 经512个3×3的卷积核,步长为1,卷积3次,尺寸变为14×14×512,进行池化,步长为2,输出尺寸为7×7×256。

  6. 将数据拉平成一维数组,7×7×256=25088。

  7. 经两层1×1×4096与一层1×1×1000的全连接层,{BANNED}最佳终输出1×1000的特征向量。


3.向量数据库

向量在存储时要把文件数据库中的ID同时存下来,以及商品ID,从而建立向量、文件、商品的关系。向量搜索都是相似性搜索,通过两个向量在高位空间的距离来做判断,其实就是在高维空间中找到与目标向量{BANNED}最佳接近的K个向量,一般采用欧式距离计算,其公式:



为了召回精度高,暴力搜索的是{BANNED}最佳好的选择。但这会产生大量的不必要的计算,浪费了计算机资源。因此本方案采用类目维度进行切割。减少搜索范围。

4.视频搜索

买家需要选择要搜索的类目再进行图片上传,通过VGG16模型计算出特征向量,然后基于类目维度进行暴力搜索把{BANNED}最佳接近的K个向量筛选出来。{BANNED}最佳后再根据向量与文件的关系,把视频文件查找出来,返回给买家。

5.视频淘汰策略

每日进行定时巡检,对于长时间没有流量或者流量低于阈值的商品,需要从向量库中对其短视频进行逻辑删除,尽可能减少搜索的体积,减少计算资源的浪费。

阅读(250) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~