分类: 数据库开发技术
2023-01-10 14:34:01
商业发展与职能技术部-体验保障研发组
康睿 姚再毅 李振 刘斌 王北永
说明:以下全部均基于eslaticsearch 8.1 版本
官网文档地址:
ElasticSearch | Mysql |
---|---|
Index | Table |
Type废弃 | Table废弃 |
Document | Row |
Field | Column |
Mapping | Schema |
Everything is indexed | Index |
Query DSL | SQL |
GET | select * from |
POST | update table set ... |
Aggregations | group by\sum\sum |
cardinality | 去重 distinct |
reindex | 数据迁移 |
定义: 相同文档结构(Mapping)文档的结合 由唯一索引名称标定 一个集群中有多个索引 不同的索引代表不同的业务类型数据 注意事项: 索引名称不支持大写 索引名称{BANNED}最佳大支持255个字符长度 字段的名称,支持大写,不过建议全部统一小写
官网文档地址:
注意: 静态参数索引创建后,不再可以修改,动态参数可以修改 思考: 一、为什么主分片创建后不可修改? A document is routed to a particular shard in an index using the following formula:
官网文档地址:
自动检测字段类型后添加字段 也就是哪怕你没有在es的mapping中定义该字段,es也会动态的帮你检测字段类型
// 删除test01索引,保证这个索引现在是干净的 DELETE test01 // 不定义mapping,直接一条插入数据试试看, POST test01/_doc/1 { "name":"kangrui10" } // 然后我们查看test01该索引的mapping结构 看看name这个字段被定义成了什么类型 // 由此可以看出,name一级为text类型,二级定义为keyword,但其实这并不是我们想要的结果, // 我们业务查询中name字段并不会被分词查询,一般都是全匹配(and name = xxx) // 以下的这种结果,我们想要实现全匹配 就需要 name.keyword = xxx 反而麻烦 GET test01/_mapping { "test01" : { "mappings" : { "properties" : { "name" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } } } } } }
可选值 | 说明 | 解释 |
---|---|---|
true | New fields are added to the mapping (default). | 创建mapping时,如果不指定dynamic的值,默认true,即如果你的字段没有收到指定类型,就会es帮你动态匹配字段类型 |
false | New fields are ignored. These fields will not be indexed or searchable, but will still appear in the _source field of returned hits. These fields will not be added to the mapping, and new fields must be added explicitly. | 若设置为false,如果你的字段没有在es的mapping中创建,那么新的字段,一样可以写入,但是不能被查询,mapping中也不会有这个字段,也就是被写入的字段,不会被创建索引 |
strict | If new fields are detected, an exception is thrown and the document is rejected. New fields must be explicitly added to the mapping. | 若设置为strict,如果新的字段,没有在mapping中创建字段,添加会直接报错,生产环境推荐,更加严谨。示例如下,如要新增字段,就必须手动的新增字段 |
字段匹配相对准确,但不一定是用户期望的
比如现在有一个text字段,es只会给你设置为默认的standard分词器,但我们一般需要的是ik中文分词器
占用多余的存储空间
string类型匹配为text和keyword两种类型,意味着会占用更多的存储空间
mapping爆炸
如果不小心写错了查询语句,get用成了put误操作,就会错误创建很多字段
官网文档地址:
DocValue其实是在构建倒排索引时,会额外建立一个有序的正排索引(基于document => field value的映射列表) DocValue本质上是一个序列化的 列式存储,这个结构非常适用于聚合(aggregations)、排序(Sorting)、脚本(scripts access to field)等操作。而且,这种存储方式也非常便于压缩,特别是数字类型。这样可以减少磁盘空间并且提高访问速度。 几乎所有字段类型都支持DocValue,除了text和annotated_text字段。
正排索引其实就是类似于数据库表,通过id和数据进行关联,通过搜索文档id,来获取对应的数据
// 创建一个索引,test03,字段满足以下条件 // 1. speaker: keyword // 2. line_id: keyword and not aggregateable // 3. speech_number: integer PUT test03 { "mappings": { "properties": { "speaker": { "type": "keyword" }, "line_id":{ "type": "keyword", "doc_values": false }, "speech_number":{ "type": "integer" } } } }
官网地址:
官网文档地址: 可配置0个或多个
:用途:删除HTML元素,如 ,并解 码HTML实体,如&amp
:用途:替换指定字符
:用途:基于正则表达式替换指定字符
官网文档地址: 只能配置一个 用分词器对文本进行分词
官网文档地址: 可配置0个或多个 分词后再加工,比如转小写、删除某些特殊的停用词、增加同义词等
有一个文档,内容类似 dag & cat, 要求索引这个文档,并且使用match_parase_query, 查询dag & cat 或者 dag and cat,都能够查到 题目分析: 1.何为match_parase_query:match_phrase 会将检索关键词分词。match_phrase的分词结果必须在被检索字段的分词中都包含,而且顺序必须相同,而且默认必须都是连续的。 2.要实现 & 和 and 查询结果要等价,那么就需要自定义分词器来实现了,定制化的需求 3.如何自定义一个分词器:https:///en/elasticsearch/reference/8.1/analysis-custom-analyzer.html 4.解法1核心使用功能点, 5.解法2核心使用功能点,
# 新建索引
PUT /test01
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"char_filter": [ "my_mappings_char_filter" ], "tokenizer": "standard",
}
},
"char_filter": {
"my_mappings_char_filter": {
"type": "mapping", "mappings": [ "& => and" ]
}
}
}
},
"mappings": {
"properties": {
"content":{
"type": "text", "analyzer": "my_analyzer" }
}
}
} // 说明 // 三段论之Character filters,使用char_filter进行文本替换 // 三段论之Token filters,使用默认分词器 // 三段论之Token filters,未设定 // 字段content 使用自定义分词器my_analyzer # 填充测试数据
PUT test01/_bulk
{"index":{"_id":1}}
{"content":"doc & cat"}
{"index":{"_id":2}}
{"content":"doc and cat"}
# 执行测试,doc & cat || oc and cat 结果输出都为两条
POST test01/_search
{
"query": {
"bool": {
"must": [
{
"match_phrase": {
"content": "doc & cat" }
}
]
}
}
}
# 解题思路,将& 和 and 设定为同义词,使用Token filters # 创建索引 PUT /test02
{ "settings": { "analysis": { "analyzer": { "my_synonym_analyzer": { "tokenizer": "whitespace", "filter": [ "my_synonym" ]
}
}, "filter": { "my_synonym": { "type": "synonym", "lenient": true, "synonyms": [ "& => and" ]
}
}
}
}, "mappings": { "properties": { "content": { "type": "text", "analyzer": "my_synonym_analyzer" }
}
}
} // 说明 // 三段论之Character filters,未设定 // 三段论之Token filters,使用whitespace空格分词器,为什么不用默认分词器?因为默认分词器会把&分词后剔除了,就无法在去做分词后的过滤操作了 // 三段论之Token filters,使用synony分词后过滤器,对&和and做同义词 // 字段content 使用自定义分词器my_synonym_analyzer # 填充测试数据 PUT test02/_bulk
{"index":{"_id":1}}
{"content":"doc & cat"}
{"index":{"_id":2}}
{"content":"doc and cat"} # 执行测试 POST test02/_search
{ "query": { "bool": { "must": [
{ "match_phrase": { "content": "doc & cat" }
}
]
}
}
}
官网文档地址:
// 单字段多类型,比如一个字段我想设置两种分词器
PUT my-index-000001 { "mappings": { "properties": { "city": { "type": "text", "analyzer":"standard", "fields": { "fieldText": { "type": "text", "analyzer":"ik_smart",
}
}
}
}
}
}
官网文档地址:
假如业务中需要根据某两个数字类型字段的差值来排序,也就是我需要一个不存在的字段, 那么此时应该怎么办? 当然你可以刷数,新增一个差值结果字段来实现,假如此时不允许你刷数新增字段怎么办?
# 假定有以下索引和数据 PUT test03
{ "mappings": { "properties": { "emotion": { "type": "integer" }
}
}
}
POST test03/_bulk
{"index":{"_id":1}}
{"emotion":2}
{"index":{"_id":2}}
{"emotion":5}
{"index":{"_id":3}}
{"emotion":10}
{"index":{"_id":4}}
{"emotion":3} # 要求:emotion > 5, 返回emotion_falg = '1', # 要求:emotion < 5, 返回emotion_falg = '-1', # 要求:emotion = 5, 返回emotion_falg = '0',
检索时指定运行时字段: 该字段本质上是不存在的,所以需要检索时要加上 fields *
GET test03/_search
{ "fields": [ "*" ], "runtime_mappings": { "emotion_falg": { "type": "keyword", "script": { "source": """
if(doc['emotion'].value>5)emit('1');
if(doc['emotion'].value<5)emit('-1');
if(doc['emotion'].value==5)emit('0');
""" }
}
}
}
创建索引时指定运行时字段: 该方式支持通过运行时字段做检索
# 创建索引并指定运行时字段 PUT test03_01
{ "mappings": { "runtime": { "emotion_falg": { "type": "keyword", "script": { "source": """
if(doc['emotion'].value>5)emit('1');
if(doc['emotion'].value<5)emit('-1');
if(doc['emotion'].value==5)emit('0');
""" }
}
}, "properties": { "emotion": { "type": "integer" }
}
}
} # 导入测试数据 POST test03_01/_bulk
{"index":{"_id":1}}
{"emotion":2}
{"index":{"_id":2}}
{"emotion":5}
{"index":{"_id":3}}
{"emotion":10}
{"index":{"_id":4}}
{"emotion":3} # 查询测试 GET test03_01/_search
{ "fields": [ "*" ]
}
# 有以下索引和数据 PUT test04
{ "mappings": { "properties": { "A":{ "type": "long" }, "B":{ "type": "long" }
}
}
} PUT task04/_bulk
{"index":{"_id":1}}
{"A":100,"B":2}
{"index":{"_id":2}}
{"A":120,"B":2}
{"index":{"_id":3}}
{"A":120,"B":25}
{"index":{"_id":4}}
{"A":21,"B":25} # 需求:在task04索引里,创建一个runtime字段,其值是A-B,名称为A_B; 创建一个range聚合,分为三级:小于0,0-100,100以上;返回文档数 // 使用知识点:
// 1.检索时指定运行时字段: https:///en/elasticsearch/reference/8.1/runtime-search-request.html
// 2.范围聚合 https:///en/elasticsearch/reference/8.1/search-aggregations-bucket-range-aggregation.html
# 结果测试 GET task04/_search
{ "fields": [ "*" ], "size": 0, "runtime_mappings": { "A_B": { "type": "long", "script": { "source": """
emit(doc['A'].value - doc['B'].value);
""" }
}
}, "aggs": { "price_ranges_A_B": { "range": { "field": "A_B", "ranges": [
{ "to": 0 },
{ "from": 0, "to": 100 },
{ "from": 100 }
]
}
}
}
}
官网文档地址:
官网文档地址:
// 注意:text类型默认是不能排或聚合的,如果非要排序或聚合,需要开启fielddata GET /kibana_sample_data_ecommerce/_search
{
"query": {
"match": {
"customer_last_name": "wood" }
},
"highlight": {
"number_of_fragments": 3, "fragment_size": 150, "fields": {
"customer_last_name": {
"pre_tags": [ "" ], "post_tags": [ "" ]
}
}
},
"sort": [
{
"currency": {
"order": "desc" },
"_score": {
"order": "asc" }
}
]
}
官网文档地址:
# 注意 from的起始值是 0 不是 1 GET kibana_sample_data_ecommerce/_search
{ "from": 5, "size": 20, "query": { "match": { "customer_last_name": "wood" }
}
}
# 题目 In the spoken lines of the play, highlight the word Hamlet (int the text_entry field) startint the highlihnt with "#aaa#" and ending it with "#bbb#" return all of speech_number field lines in reverse order; '20' speech lines per page,starting from line '40' # highlight 处理 text_entry 字段 ; 关键词 Hamlet 高亮 # page分页:from:40;size:20 # speech_number:倒序 POST test09/_search
{ "from": 40, "size": 20, "query": { "bool": { "must": [
{ "match": { "text_entry": "Hamlet" }
}
]
}
}, "highlight": { "fields": { "text_entry": { "pre_tags": [ "#aaa#" ], "post_tags": [ "#bbb#" ]
}
}
}, "sort": [
{ "speech_number.keyword": { "order": "desc" }
}
]
}
官网文档地址:
7.7.0
允许用户在异步搜索结果时可以检索,从而消除了仅在查询完成后才等待{BANNED}最佳终响应的情况
执行异步检索
POST /sales*/_async_search?size=0
查看异步检索
GET /_async_search/id值
查看异步检索状态
GET /_async_search/id值
删除、终止异步检索
DELETE /_async_search/id值
返回值 | 含义 |
---|---|
id | 异步检索返回的唯一标识符 |
is_partial | 当查询不再运行时,指示再所有分片上搜索是成功还是失败。在执行查询时,is_partial=true |
is_running | 搜索是否仍然再执行 |
total | 将在多少分片上执行搜索 |
successful | 有多少分片已经成功完成搜索 |
官网文档地址:
在ES中,索引别名(index aliases)就像一个快捷方式或,可以指向一个或多个索引。别名带给我们极大的灵活性,我们可以使用索引别名实现以下功能:
在一个运行中的ES集群中无缝的切换一个索引到另一个索引上(无需停机)
分组多个索引,比如按月创建的索引,我们可以通过别名构造出一个{BANNED}最佳近3个月的索引
查询一个索引里面的部分数据构成一个类似数据库的视图(views
方式1:POST index_01,index_02.index_03/_search 方式2:POST index*/search
# 指定test05的别名为 test05_aliases PUT test05
{ "mappings": { "properties": { "name":{ "type": "keyword" }
}
}, "aliases": { "test05_aliases": {}
}
}
PUT _index_template/template_1
{ "index_patterns": ["te*", "bar*"], "template": { "settings": { "number_of_shards": 1
}, "mappings": { "_source": { "enabled": true }, "properties": { "host_name": { "type": "keyword" }, "created_at": { "type": "date", "format": "EEE MMM dd HH:mm:ss Z yyyy" }
}
}, "aliases": { "mydata": { }
}
}, "priority": 500, "composed_of": ["component_template1", "runtime_component_template"], "version": 3, "_meta": { "description": "my custom" }
}
POST _aliases { "actions": [ { "add": { "index": "logs-nginx.access-prod", "alias": "logs" } } ] }
POST _aliases { "actions": [ { "remove": { "index": "logs-nginx.access-prod", "alias": "logs" } } ] }
# Define an index alias for 'accounts-row' called 'accounts-male': Apply a filter to only show the male account owners
# 为'accounts-row'定义一个索引别名,称为'accounts-male':应用一个过滤器,只显示男性账户所有者
POST _aliases
{
"actions": [
{
"add": {
"index": "accounts-row",
"alias": "accounts-male",
"filter": {
"bool": {
"filter": [
{
"term": {
"gender.keyword": "male"
}
}
]
}
}
}
}
]
}
官网文档地址:
模板接受在运行时指定参数。搜索模板存储在服务器端,可以在不更改客户端代码的情况下进行修改。
# 创建检索模板 PUT _scripts/my-search-template
{ "script": { "lang": "mustache", "source": { "query": { "match": { "{{query_key}}": "{{query_value}}" }
}, "from": "{{from}}", "size": "{{size}}" }
}
} # 使用检索模板查询 GET my-index/_search/template
{ "id": "my-search-template", "params": { "query_key": "your filed", "query_value": "your filed value", "from": 0, "size": 10 }
}
PUT _scripts/my-search-template { "script": { "lang": "mustache", "source": { "query": { "match": { "message": "{{query_string}}" }
}, "from": "{{from}}", "size": "{{size}}" }, "params": { "query_string": "My query string" }
}
}
POST _render/template { "id": "my-search-template", "params": { "query_string": "hello world", "from": 20, "size": 10 }
}
GET my-index/_search/template
{ "id": "my-search-template", "params": { "query_string": "hello world", "from": 0, "size": 10 }
}
GET _cluster/state/metadata?pretty&filter_path=metadata.stored_scripts
DELETE _scripts/my-search-templateath=metadata.stored_scripts
官网文档地址:
// 一批数据里,有不同的标签,数据结构一致,不同的标签存储到不同的索引(A、B、C),{BANNED}最佳后要严格按照标签来分类展示的话,用什么查询比较好?
// 要求:先展示A类,然后B类,然后C类 # 测试数据如下 put /index_a_123/_doc/1
{ "title":"this is index_a..." }
put /index_b_123/_doc/1
{ "title":"this is index_b..." }
put /index_c_123/_doc/1
{ "title":"this is index_c..." } # 普通不指定的查询方式,该查询方式下,返回的三条结果数据评分是相同的 POST index_*_123/_search
{ "query": { "bool": { "must": [
{ "match": { "title": "this" }
}
]
}
}
}
官网文档地址:https:///en/elasticsearch/reference/8.1/search-search.html
indices_boost # 也就是索引层面提升权重 POST index_*_123/_search
{ "indices_boost": [
{ "index_a_123": 10
},
{ "index_b_123": 5
},
{ "index_c_123": 1
}
], "query": { "bool": { "must": [
{ "match": { "title": "this" }
}
]
}
}
}
某索引index_a有多个字段, 要求实现如下的查询: 1)针对字段title,满足'ssas'或者'sasa’。
2)针对字段tags(数组字段),如果tags字段包含'pingpang',
则提升评分。
要求:写出实现的DSL?
# 测试数据如下
put index_a/_bulk
{"index":{"_id":1}}
{"title":"ssas","tags":"basketball"}
{"index":{"_id":2}}
{"title":"sasa","tags":"pingpang; football"}
# 解法1 POST index_a/_search
{ "query": { "bool": { "must": [
{ "bool": { "should": [
{ "match": { "title": "ssas" }
},
{ "match": { "title": "sasa" }
}
]
}
}
], "should": [
{ "match": { "tags": { "query": "pingpang", "boost": 1 }
}
}
]
}
}
}
# 解法2 // https:///en/elasticsearch/reference/8.1/query-dsl-function-score-query.html POST index_a/_search
{ "query": { "bool": { "should": [
{ "function_score": { "query": { "match": { "tags": { "query": "pingpang" }
}
}, "boost": 1 }
}
], "must": [
{ "bool": { "should": [
{ "match": { "title": "ssas" }
},
{ "match": { "title": "sasa" }
}
]
}
}
]
}
}
}
对于某些结果不满意,但又不想通过 must_not 排除掉,可以考虑可以考虑boosting query的negative_boost。
即:降低评分
negative_boost
(Required, float) Floating point number between 0 and 1.0 used to decrease the relevance scores of documents matching the negative query.
官网文档地址:https:///en/elasticsearch/reference/8.1/query-dsl-boosting-query.html
POST index_a/_search
{ "query": { "boosting": { "positive": { "term": { "tags": "football" }
}, "negative": { "term": { "tags": "pingpang" }
}, "negative_boost": 0.5
}
}
}
如何同时根据 销量和浏览人数进行相关度提升?
问题描述:针对商品,例如有想要有一个提升相关度的计算,同时针对销量和浏览人数?
例如oldScore*(销量+浏览人数)
**************************
商品 销量 浏览人数
A 10 10
B 20 20
C 30 30
************************** # 示例数据如下 put goods_index/_bulk
{"index":{"_id":1}}
{"name":"A","sales_count":10,"view_count":10}
{"index":{"_id":2}}
{"name":"B","sales_count":20,"view_count":20}
{"index":{"_id":3}}
{"name":"C","sales_count":30,"view_count":30}
官网文档地址:https:///en/elasticsearch/reference/8.1/query-dsl-function-score-query.html
知识点:script_score
POST goods_index/_search
{ "query": { "function_score": { "query": { "match_all": {}
}, "script_score": { "script": { "source": "_score * (doc['sales_count'].value+doc['view_count'].value)" }
}
}
}
}
官网文档地址:
写一个查询,要求某个关键字再文档的四个字段中至少包含两个以上
功能点:bool 查询,should / minimum_should_match 1.检索的bool查询 2.细节点 minimum_should_match
注意:minimum_should_match 当有其他子句的时候,默认值为0,当没有其他子句的时候默认值为1 POST test_index/_search
{ "query": { "bool": { "should": [
{ "match": { "filed1": "kr" }
},
{ "match": { "filed2": "kr" }
},
{ "match": { "filed3": "kr" }
},
{ "match": { "filed4": "kr" }
}
], "minimum_should_match": 2 }
}
}
官网文档地址:
官网文档地址:https:///en/elasticsearch/reference/8.1/search-aggregations-bucket-terms-aggregation.html # 按照作者统计文档数 POST bilili_elasticsearch/_search
{ "size": 0, "aggs": { "agg_user": { "terms": { "field": "user", "size": 1
}
}
}
}
官网文档地址:https:///en/elasticsearch/reference/8.1/search-aggregations-bucket-datehistogram-aggregation.html # 按照up_time 按月进行统计 POST bilili_elasticsearch/_search
{ "size": 0, "aggs": { "agg_up_time": { "date_histogram": { "field": "up_time", "calendar_interval": "month" }
}
}
}
官网文档地址:https:///en/elasticsearch/reference/8.1/search-aggregations-metrics-max-aggregation.html # 获取up_time{BANNED}最佳大的 POST bilili_elasticsearch/_search
{ "size": 0, "aggs": { "agg_max_up_time": { "max": { "field": "up_time" }
}
}
}
官网文档地址:https:///en/elasticsearch/reference/8.1/search-aggregations-metrics-top-hits-aggregation.html # 根据user聚合只取一个聚合结果,并且获取命中数据的详情前3条,并按照指定字段排序 POST bilili_elasticsearch/_search
{ "size": 0, "aggs": { "terms_agg_user": { "terms": { "field": "user", "size": 1 }, "aggs": { "top_user_hits": { "top_hits": { "_source": { "includes": [ "video_time", "title", "see", "user", "up_time" ]
}, "sort": [
{ "see":{ "order": "desc" }
}
], "size": 3 }
}
}
}
}
} // 返回结果如下 { "took" : 91, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1000, "relation" : "eq" }, "max_score" : null, "hits" : [ ]
}, "aggregations" : { "terms_agg_user" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 975, "buckets" : [
{ "key" : "Elastic搜索", "doc_count" : 25, "top_user_hits" : { "hits" : { "total" : { "value" : 25, "relation" : "eq" }, "max_score" : null, "hits" : [
{ "_index" : "bilili_elasticsearch", "_id" : "5ccCVoQBUyqsIDX6wIcm", "_score" : null, "_source" : { "video_time" : "03:45", "see" : "92", "up_time" : "2021-03-19", "title" : "Elastic 社区大会2021: 用加 Gatling 进行Elasticsearch的负载测试,寓教于乐。", "user" : "Elastic搜索" }, "sort" : [ "92" ]
},
{ "_index" : "bilili_elasticsearch", "_id" : "8scCVoQBUyqsIDX6wIgn", "_score" : null, "_source" : { "video_time" : "10:18", "see" : "79", "up_time" : "2020-10-20", "title" : "为Elasticsearch启动htpps访问", "user" : "Elastic搜索" }, "sort" : [ "79" ]
},
{ "_index" : "bilili_elasticsearch", "_id" : "7scCVoQBUyqsIDX6wIcm", "_score" : null, "_source" : { "video_time" : "04:41", "see" : "71", "up_time" : "2021-03-19", "title" : "Elastic 社区大会2021: Elasticsearch作为一个地理空间的数据库", "user" : "Elastic搜索" }, "sort" : [ "71" ]
}
]
}
}
}
]
}
}
}
Pipeline:基于聚合的聚合 官网文档地址:
官网文档地址:
# 根据order_date按月分组,并且求销售总额大于1000 POST kibana_sample_data_ecommerce/_search
{ "size": 0, "aggs": { "date_his_aggs": { "date_histogram": { "field": "order_date", "calendar_interval": "month" }, "aggs": { "sum_aggs": { "sum": { "field": "total_unique_products" }
}, "sales_bucket_filter": { "bucket_selector": { "buckets_path": { "totalSales": "sum_aggs" }, "script": "params.totalSales > 1000" }
}
}
}
}
}
earthquakes索引中包含了过去30个月的地震信息,请通过一句查询,获取以下信息
l 过去30个月,每个月的平均 mag
l 过去30个月里,平均mag{BANNED}最佳高的一个月及其平均mag
l 搜索不能返回任何文档
max_bucket 官网地址:https:///en/elasticsearch/reference/8.1/search-aggregations-pipeline-max-bucket-aggregation.html
POST earthquakes/_search
{ "size": 0, "query": { "range": { "time": { "gte": "now-30M/d", "lte": "now" }
}
}, "aggs": { "agg_time_his": { "date_histogram": { "field": "time", "calendar_interval": "month" }, "aggs": { "avg_aggs": { "avg": { "field": "mag" }
}
}
}, "max_mag_sales": { "max_bucket": { "buckets_path": "agg_time_his>avg_aggs" }
}
}
}