2020年(30)
分类: LINUX
2020-10-13 16:56:13
RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色,这个标准几乎包括了人类视力所能感知的所有颜色,是目前运用最广的颜色系统之一。
RGB
色彩模式使用RGB模型为图像中每一个像素的RGB分量分配一个0~255范围内的强度值。例如:纯红色R值为255,G值为0,B值为0;灰色的R、
G、B三个值相等(除了0和255);白色的R、G、B都为255;黑色的R、G、B都为0。RGB图像只使用三种颜色,就可以使它们按照不同的比例混
合,在屏幕上重现16581375种颜色。
在 RGB 模式下,每种 RGB 成分都可使用从 0(黑色)到 255(白色)的值。
例如,亮红色使用 R 值 246、G 值 20 和 B 值 50。 当所有三种成分值相等时,产生灰色阴影。 当所有成分的值均为 255
时,结果是纯白色;当该值为 0 时,结果是纯黑色。
减色 (CMYK)
C. 青色(Cyan) M. 洋红色(Magenta) Y. 黄色(Yellow) K. 黑色(blacK)
CMYK模型针对印刷媒介,即基于油墨的光吸收/反射特性,眼睛看到颜色实际上是物体吸收白光中特定频率的光而反射其余的光的颜色。
每种 CMYK 四色油墨可使用从 0 至 100% 的值。 为最亮颜色指定的印刷色油墨颜色百分比较低,而为较暗颜色指定的百分比较高。 例如,亮红色可能包含 2% 青色、93% 洋红、90% 黄色和 0% 黑色。
PS中拾色器-RGB(加色)与CMY(减色)是互补色,
RGB以黑色为底色加,即RGB均为0是黑色,均为255是白色
CMY以白色为底色减,即CMY均为0是白色,均为100%是黑色(但在实际中,由于油墨的纯度等问题这样得不到纯正的黑色,因此引入K)
Lab色彩模型是由照度(L)和有关色彩的a, b三个要素组成。L表示照度(
Luminosity),相当于亮度,a表示从红色至绿色的范围,b表示从蓝色至黄色的
范围。L的值域由0到100,L=50时,就相当于50%的黑;a和b的值域都是由+120至
-120,其中+120 a就是红色,渐渐过渡到-120 a的时候就变成绿色;同样原理,
+120 b是黄色,-120 b是蓝色。所有的颜色就以这三个值交互变化所组成。例如
,一块色彩的Lab值是L = 100,a = 30, b = 0, 这块色彩就是粉红色。
Lab色彩模型除了上述不依赖于设备的优点外,还具有它自身的优势:色域宽阔
。它不仅包含了RGB,CMY的所有色域,还能表现它们不能表现的色彩。人的肉眼
能感知的色彩,都能通过Lab模型表现出来。另外,Lab色彩模型的绝妙之处还在
于它弥补了RGB色彩模型色彩分布不均的不足,因为RGB模型在蓝色到绿色之间的
过渡色彩过多,而在绿色到红色之间又缺少黄色和其他色彩。
如果我们想在数字图形的处理中保留尽量宽阔的色域和丰富和色彩,最好选择Lab
色彩模型进行工作,图像处理完成后,再根据输出的需要转换成RGB(显示用)
或CMYK(打印及印刷用)色彩模型,在Lab色彩模型下工作,速度与RGB差不多快
,但比CMYK 要快很多。这样做的最大好处是它能够在最终的设计成果中,获得
比任何色彩模型都更加优质的色彩。
CIE L*a*b* 颜色模型 (Lab) 基于人对颜色的感觉。 它是由专门制定各方面光线标准的组织 Commission Internationale d'Eclairage (CIE) 创建的数种颜色模型之一。
Lab
中的数值描述正常视力的人能够看到的所有颜色。 因为 Lab
描述的是颜色的显示方式,而不是设备(如显示器、桌面打印机或数码相机)生成颜色所需的特定色料的数量,所以 Lab 被视为与设备无关的颜色模型。
色彩管理系统使用 Lab 作为色标,将颜色从一个色彩空间转换到另一个色彩空间。
-------------------------------------------------------------------------------------------------------
HSV颜色空间
HSV(hue,saturation,value)
颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于V=1. 它包含RGB模型中的R=1,G=1,B=1
三个面,所代表的颜色较亮。色彩H由绕V轴的旋转角给定。红色对应于 角度0°
,绿色对应于角度120°,蓝色对应于角度240°。在HSV颜色模型中,每一种颜色和它的补色相差180°
。饱和度S取值从0到1,所以圆锥顶面的半径为1。HSV颜色模型所代表的颜色域是CIE色度图的一个子集,这个模型中饱和度为百分之百的颜色,其纯度一
般小于百分之百。在圆锥的顶点(即原点)处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处S=0,V=1,H无定义,代表白色。从该点到原点代表亮
度渐暗的灰色,即具有不同灰度的灰色。对于这些点,S=0,H的值无定义。可以说,HSV模型中的V轴对应于RGB颜色空间中的主对角线。在圆锥顶面的圆
周上的颜色,V=1,S=1,这种颜色是纯色。HSV模型对应于画家配色的方法。画家用改变色浓和色深的方法从某种纯色获得不同色调的颜色,在一种纯色中
加入白色以改变色浓,加入黑色以改变色深,同时加入不同比例的白色,黑色即可获得各种不同的色调。
HSI颜色空间
HSI色彩空间是从人的视觉系统出发,用色调
(Hue)、色饱和度(Saturation或Chroma)和亮度
(Intensity或Brightness)来描述色彩。HSI色彩空间可以用一个圆锥空间模型来描述。用这种描述HIS色彩空间的圆锥模型相当复杂,
但确能把色调、亮度和色饱和度的变化情形表现得很清楚。通常把色调和饱和度通称为色度,用来表示颜色的类别与深浅程度。由于人的视觉对亮度的敏感程度远强
于对颜色浓淡的敏感程度,为了便于色彩处理和识别,人的视觉系统经常采用HSI色彩空间,它比RGB色彩空间更符合人的视觉特性。在图像处理和计算机视觉
中大量算法都可在HSI色彩空间中方便地使用,它们可以分开处理而且是相互独立的。因此,在HSI色彩空间可以大大简化图像分析和处理的工作量。HSI色
彩空间和RGB色彩空间只是同一物理量的不同表示法,因而它们之间存在着 转换关系。
其他颜色模型:
CMYK颜色空间 HSL颜色空间 HSB颜色空间 Ycc颜色空间 XYZ颜色空间 Lab 颜色空间 YUV颜色空间
RGB颜色空间
RGB(red,green,blue)颜色空间最常用的用途就是显示器系统,彩色阴极射线管,彩色光栅图形的显
示器都使用R、G、B数值来驱动R、G、B
电子枪发射电子,并分别激发荧光屏上的R、G、B三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色;扫描仪也是通过吸收原稿经反射或透射
而发送来的光线中的R、G、B成分,并用它来表示原稿的颜色。RGB色彩空间称为与设备相关的色彩空间,因为不同的扫描仪扫描同一幅图像,会得到不同色彩
的图像数据;不同型号的显示器显示同一幅图像,也会有不同的色彩显示结果。显示器和扫描仪使用的RGB空间与CIE 1931
RGB真实三原色表色系统空间是不同的,后者是与设备无关的颜色空间。btw:Photoshop的色彩选取器(Color
Picker)。可以显示HSB、RGB、LAB和CMYK 色彩空间的每一种颜色的色彩值。
CMYK(cyan,magenta,yellow)颜色空间应用于印刷工业,印刷业通过青(C)、品(M)、黄(Y)
三原色油墨的不同网点面积率的叠印来表现丰富多彩的颜色和阶调,这便是三原色的CMY颜色空间。实际印刷中,一般采用青
(C)、品(M)、黄(Y)、黑(BK)四色印刷,在印刷的中间调至暗调增加黑版。当红绿蓝三原色被混合时,会产生白色,但是当混合蓝绿色、紫红色和黄色
三原色时会产生黑色。既然实际用的墨水并不会产生纯正的颜色,黑色是包括在分开的颜色,而这模型称之为CMYK。CMYK颜色空间是和设备或者是印刷过程
相关的,则工艺方法、油墨的特性、纸张的特性等,不同的条件有不同的印刷结果。所以CMYK颜色空间称为与设备有关的表色空间。而且,CMYK具有多值
性,也就是说对同一种具有相同绝对色度的颜色,在相同的印刷过程前提下,可以用分种
CMYK数字组合来表示和印刷出来。这种特性给颜色管理带来了很多麻烦,同样也给控制带来了很多的灵活性。在印刷过程中,必然要经过一个分色的过程,所谓
分色就是将计算机中使 用的RGB颜色转换成印刷使用的CMYK
颜色。在转换过程中存在着两个复杂的问题,其一是这两个颜色空间在表现颜色的范围上不完全一样,RGB的色域较大而CMYK则较小,因此就要进行色域压
缩;其二是这两个颜色都是和具体的设备相关的,颜色本身没有绝对性。因此就需要通过一个与设备无关的颜色空间来进行转换,即可以通过以上介绍的XYZ或
LAB色空间来 进行转换。
HSL(hue,saturation,lightness)颜色空间,这个颜色空间都是用户台式机图形程序的颜色表示, 用六角形锥体表示自己的颜色模型。
HSB(hue,saturation,brightness)颜色空间,这个颜色空间都是用户台式机图形程序的颜色表示, 用六角形锥体表示自己的颜色模型。
柯达发明的颜色空间,由于PhotoCd在存储图像的时候要经过一种模式压缩,所以 PhotoCd采用了 Ycc颜色空间,Ycc空间将亮度作由它的主要组件,具有两个 单独的颜色通道,采用Ycc颜色空间 来保存图像,可以节约存储空间。
国际照明委员会(CIE)在进行了大量正常人视觉测量和统计,1931年建立了"标准色度观察者",从而奠定了现代CIE
标准色度学的定量基础。由于"标准色度观察者"用来标定光谱色时出现负刺激值,计算不便,也不易理解,因此1931年CIE在RGB系统基础上,改用三个
假想的原色X、Y、 Z建立了一个新的色度系统。将它匹配等能光谱的三刺激值,定名为"CIE1931
标准色度观察者光谱三刺激值",简称为"CIE1931标准色度观察者"。这一系统叫做"CIE1931标准色度系统"或称为" 2°
视场XYZ色度系统"。CIEXYZ颜色空间稍加变换就可得到Yxy色彩空间,其中Y取三刺激值中Y的值,表示亮度,x、y反映颜色的色度特性。定义如
下:在色彩管理中,选择与设备无关的颜色空间是十分重要的,与设备无关的颜色空间由国际照明委员会(CIE)制定,包括CIEXYZ和CIELAB两个标
准。它们包含了人眼所能辨别的全部颜色。而且,CIEYxy测色制的建立给定量的确定颜色创造了条件。但是,在这一空间中,两种不同颜色之间的距离值并不
能正确地反映人们色彩感觉差别的大小,也就是说在CIEYxy色厦图中,在不同的位置不同方向上颜色的宽容量是不同的,这就是Yxy颜色空间的不均匀性。
这一缺陷的存在,使得在Yxy及XYZ空间不能直观地评价颜色。
Lab颜色空间是由CIE(国际照明委员会)制定的一种色彩模式。自然界中任何一点色都可以在Lab空间中表达出来,它
的色彩空间比RGB空间还要大。另外,这种模式是以数字化方式来描述人的视觉感应,与设备无关,所以它弥补了RGB和CMYK模式必须依赖于设备色彩特性
的不足。由于Lab的色彩空间要比
RGB模式和CMYK模式的色彩空间大。这就意味着RGB以及CMYK所能描述的色彩信息在Lab空间中都能得以影射。Lab空间取坐标Lab,其中L亮
度;a的正数代表红色,负端代表绿色;b的正数代表黄色, 负端代表兰色(a,b)有L=116f(y)-16,
a=500[f(x/0.982)-f(y)], b=200[f(y)-f(z/1.183 )];其中: f(x)=7.787x+0.138,
x<0.008856; f(x)=(x)1/3,x>0.008856。
在现代彩色电视系统中,通常采用三管彩色摄像机或彩色CCD(点耦合器件)摄像机,它把摄得的彩色图像信号,经分色、分别
放大校正得到RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y、B-Y,最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送出
去。这就是我们常用的YUV色彩空间。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么
这样表示的图就是黑白灰度图。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色信号。根据美
国国家电视制式委员会,NTSC制式的标准,当白光的亮度用Y来表示时,它和红、绿、蓝三色光的关系可用如下式的方程描
述:Y=0.3R+0.59G+0.11B
这就是常用的亮度公式。色差U、V是由B-Y、R-Y按不同比例压缩而成的。如果要由YUV空间转化成RGB空间,只要进行相反的逆运算即可。与YUV色
彩空间类似的还有Lab色彩空间,它也是用亮度和色差来描述色彩分量,其中L为 亮度、a和b分别为各色差分量。