Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1997376
  • 博文数量: 2579
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 25919
  • 用 户 组: 普通用户
  • 注册时间: 2020-11-26 14:30
个人简介

更多python、Linux、网络安全学习内容,可移步:www.oldboyedu.com或关注\"老男孩Linux\"公众号

文章分类

全部博文(2579)

文章存档

2025年(50)

2024年(379)

2023年(643)

2022年(693)

2021年(734)

2020年(80)

我的朋友

分类: Python/Ruby

2022-03-29 14:30:29

  IT行业迅速发展,许多新兴技术不断问世,人工智能、云原生、云计算、机器学习、深度学习等等新名词逐渐出现在人们的视线中,其实深度学习主要还是属于机器学习的范畴领域之内的,本篇文章我们来了解下两者的具体区别有哪些,请看下文:

  | 机器学习的算法流程 |

  1、数据集准备

  2、探索性地对数据进行分析

  3、数据预处理

  4、数据分割

  5、机器学习算法建模

  6、选择机器学习任务

  7、评价机器学习算法对实际数据的应用情况如何

  首先我们要研究的是数据问题,数据集是构建机器学习模型流程的起点,进行探索性数据分析是为了获得对数据的初步了解。探索性数据分析方法简单来说就是去了解数据,分析数据,搞清楚数据的分布。主要注重数据的真实分布,强调数据的可视化,使分析者能一目了然看出数据中隐含的规律,从而得到启发,以此帮助分析者找到适合数据的模型。

  数据预处理,其实就是对数据进行清理、数据整理或普通数据处理。指对数据进行各种检查和校正过程,以纠正缺失值、拼写错误、使数值正常化/标准化以使其具有可比性、转换数据(如对数转换)等问题。

  | 深度学习的算法流程 |

  深度学习优化了数据分析,建模过程的流程也是缩短了,由神经网络统一了原来机器学习中百花齐放的算法。

  1、数据集准备

  2、数据预处理

  3、数据分割

  4、定义神经网络模型

  5、训练网络

  深度学习不需要我们自己去提取特征,而是通过神经网络自动对数据进行高维抽象学习,减少了特征工程的构成,在这方面节约了很多时间。

  但是同时因为引入了更加深、更复杂的网络模型结构,所以调参工作变得更加繁重啦。例如:定义神经网络模型结构、确认损失函数、确定优化器,最后就是反复调整模型参数的过程。

阅读(419) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~