Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3665852
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2022-05-06 17:49:29

# -*- coding: utf-8 -*-

# @Time : 2022/3/30 14:44

# @Author : Orange

# @File : gm_trigonometric.py

from decimal import *

import math

class GM_trig():

    def __init__(self, X0, X0_hat, L):

        '''

        :param X0: 原始序列

        :param X0_hat: 采用GM(1,1)后获得的序列

        :param L: 用户自定义的循环周期分量

        '''

        self.X0 = X0

        self.X0_hat = X0_hat

        self.R0 = (X0 - X0_hat)[1:]  # 残差

        self.L = L

        self.n = len(self.X0)

        self.B = None

    def train(self):

        self.B = np.array(

            [[1] * (self.n - 1), np.arange(1, self.n), [np.sin(2 * i * math.pi / self.L) for i in range(1, self.n)],

             [np.cos(2 * i * math.pi / self.L) for i in range(1, self.n)]]).T

        R_n = np.array(self.R0).reshape(self.n - 1, 1)

        b_hat = np.linalg.inv(np.matmul(self.B.T, self.B)).dot(self.B.T).dot(R_n)

        self.f_R0 = lambda k: b_hat[0][0] + b_hat[1][0] * k + b_hat[2][0] * np.sin(2 * k * math.pi / self.L) + b_hat[3][

            0] * np.cos(2 * k * math.pi / self.L)

    def predict(self, k, X_all_0_hat):

        '''

        :param k: 给出从0k的预测值

        :param X_all_0_hat: 所有数据(训练+测试)的GM(1,1)预测值列表

        :return:

        '''

        R0_hat = [self.f_R0(k) for k in range(1, k)]

        R0_hat.insert(0, 0)

        X_tr_hat = X_all_0_hat + R0_hat

        return X_tr_hat

    def interval_pred(self, X_tr_hat, t_val, k):

        s = math.sqrt(sum((X_tr_hat[:self.n] - self.X0) ** 2) / (self.n - 6))

        l_bound = []

        h_bound = []

        for k in range(1, k):

            Y_k = np.array([1, k, np.sin(2 * k * math.pi / self.L), np.cos(2 * k * math.pi / self.L)]).reshape(4, 1)

            h_kk = Y_k.T.dot(np.linalg.inv(np.matmul(self.B.T, self.B))).dot(Y_k)[0][0]

            ll_k = X_tr_hat[k] - t_val * s * math.sqrt(1 + h_kk)

            hh_k = X_tr_hat[k] + t_val * s * math.sqrt(1 + h_kk)

            l_bound.append(ll_k)

            h_bound.append(hh_k)

        return l_bound, h_bound

class GM11():

    def __init__(self):

        self.f = None

    def isUsable(self, X0):

        '''判断是否通过光滑检验'''

        X1 = X0.cumsum()

        rho = [X0[i] / X1[i - 1] for i in range(1, len(X0))]

        rho_ratio = [rho[i + 1] / rho[i] for i in range(len(rho) - 1)]

        print("rho:", rho)

        print("rho_ratio:", rho_ratio)

        flag = True

        for i in range(2, len(rho) - 1):

            if rho[i] > 0.5 or rho[i + 1] / rho[i] >= 1:

                flag = False

        if rho[-1] > 0.5:

            flag = False

        if flag:

            print("数据通过光滑校验")

        else:

            print("该数据未通过光滑校验")

        '''判断是否通过级比检验'''

        lambds = [X0[i - 1] / X0[i] for i in range(1, len(X0))]

        X_min = np.e ** (-2 / (len(X0) + 1))

        X_max = np.e ** (2 / (len(X0) + 1))

        for lambd in lambds:

            if lambd < X_min or lambd > X_max:

                print('该数据未通过级比检验')

                return

        print('该数据通过级比检验')

    def train(self, X0):

        X1 = X0.cumsum()

        Z = (np.array([-0.5 * (X1[k - 1] + X1[k]) for k in range(1, len(X1))])).reshape(len(X1) - 1, 1)

        # 数据矩阵AB

        A = (X0[1:]).reshape(len(Z), 1)

        B = np.hstack((Z, np.ones(len(Z)).reshape(len(Z), 1)))

        # 求灰参数

        a, u = np.linalg.inv(np.matmul(B.T, B)).dot(B.T).dot(A)

        u = Decimal(u[0])

        a = Decimal(a[0])

        print("灰参数a", a, ",灰参数u", u)

        self.f = lambda k: (Decimal(X0[0]) - u / a) * np.exp(-a * k) + u / a

    def predict(self, k):

        X1_hat = [float(self.f(k)) for k in range(k)]

        X0_hat = np.diff(X1_hat)

        X0_hat = np.hstack((X1_hat[0], X0_hat))

        return X0_hat

    def evaluate(self, X0_hat, X0):

        '''

        根据后验差比及小误差概率判断预测结果

        :param X0_hat: 预测结果

        :return:

        '''

        S1 = np.std(X0, ddof=1)  # 原始数据样本标准差

        S2 = np.std(X0 - X0_hat, ddof=1)  # 残差数据样本标准差

        C = S2 / S1  # 后验差比

        Pe = np.mean(X0 - X0_hat)

        temp = np.abs((X0 - X0_hat - Pe)) < 0.6745 * S1

        p = np.count_nonzero(temp) / len(X0)  # 计算小误差概率

        print("原数据样本标准差:", S1)

        print("残差样本标准差:", S2)

        print("后验差比:", C)

        print("小误差概率p", p)

def MAPE(y_true, y_pred):

    """计算MAPE"""

    n = len(y_true)

    mape = sum(np.abs((y_true - y_pred) / y_true)) / n * 100

    return mape

if __name__ == '__main__':

    import matplotlib.pyplot as plt

    import numpy as np

    import pandas as pd

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 步骤一(替换sans-serif字体)

    plt.rcParams['axes.unicode_minus'] =外汇跟单gendan5.com False  # 步骤二(解决坐标轴负数的负号显示问题)

    # 原始数据X

    data = pd.read_csv("test.csv")

    X = data["val"].values

    # 训练集

    X_train = X[:-4]

    # 测试集

    X_test = X[-4:]

    model = GM11()

    model.isUsable(X_train)  # 判断模型可行性

    model.train(X_train)  # 训练

    Y_pred = model.predict(len(X))  # 预测

    Y_train_pred = Y_pred[:len(X_train)]

    Y_test_pred = Y_pred[len(X_train):]

    score_test = model.evaluate(Y_test_pred, X_test)  # 评估

    print("gm(1,1)_mape:", MAPE(Y_train_pred, X_train), "%")

    model_trig = GM_trig(X_train, Y_train_pred, L=23)

    model_trig.train()

    result = model_trig.predict(len(X), Y_pred)

    X_train_pred = result[:-4]

    X_test_pred = result[-4:]

    l_bound, h_bound = model_trig.interval_pred(result, 2.179, len(X))

    # 可视化

    plt.grid()

    plt.plot(np.arange(len(X_train)), X_train, '->')

    plt.plot(np.arange(len(X_train)), X_train_pred, '-o')

    plt.plot(np.arange(len(X_train)), Y_train_pred, '-*')

    plt.legend(['负荷实际值', '三角残差预测值', 'GM(1,1)预测值'])

    print("gm(1,1)_trig_mape:", MAPE(X_train_pred, X_train), "%")

    plt.title('训练集')

    plt.show()

    # 可视化

    plt.grid()

    plt.plot(np.arange(len(X_test)), X_test, '->')

    plt.plot(np.arange(len(X_test)), X_test_pred, '-o')

    plt.plot(np.arange(len(X_test)), Y_test_pred, '-*')

    plt.legend(['负荷实际值', '三角残差预测值', 'GM(1,1)预测值'])

    plt.title('测试集')

    plt.show()

    # 区间预测可视化

    plt.figure(figsize = (10, 4))

    plt.grid(axis='y')

    plt.plot(np.arange(1, 22), h_bound,'k--.')

    plt.plot(np.arange(1, 22), l_bound,'k-->')

    plt.plot(np.arange(22), X,'r-o')

    plt.plot(np.arange(22), result,'b-d')

    plt.legend(['上界', '下界', '真实值','预测值'])

    plt.title('灰度预测——区间预测')

    plt.show()

阅读(610) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~