Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3657245
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2022-01-19 17:17:51

import torch

from torch import nn

class SiLU(nn.Module):

    @staticmethod

    def forward(x):

        return x * torch.sigmoid(x)

def get_activation(name="silu", inplace=True):

    if name == "silu":

        module = SiLU()

    elif name == "relu":

        module = nn.ReLU(inplace=inplace)

    elif name == "lrelu":

        module = nn.LeakyReLU(0.1, inplace=inplace)

    else:

        raise AttributeError("Unsupported act type: {}".format(name))

    return module

class Focus(nn.Module):

    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"):

        super().__init__()

        self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act)

    def forward(self, x):

        patch_top_left  = x[...,  ::2,  ::2]

        patch_bot_left  = x[..., 1::2,  ::2]

        patch_top_right = x[...,  ::2, 1::2]

        patch_bot_right = x[..., 1::2, 1::2]

        x = torch.cat((patch_top_left, patch_bot_left, patch_top_right, patch_bot_right,), dim=1,)

        return self.conv(x)

class BaseConv(nn.Module):

    def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"):

        super().__init__()

        pad         = (ksize - 1) // 2

        self.conv   = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias)

        self.bn     = nn.BatchNorm2d(out_channels)

        self.act    = get_activation(act, inplace=True)

    def forward(self, x):

        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):

        return self.act(self.conv(x))

class DWConv(nn.Module):

    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):

        super().__init__()

        self.dconv = BaseConv(in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act,)

        self.pconv = BaseConv(in_channels, out_channels, ksize=1, stride=1, groups=1, act=act)

    def forward(self, x):

        x = self.dconv(x)

        return self.pconv(x)

class SPPBottleneck(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu"):

        super().__init__()

        hidden_channels = in_channels // 2

        self.conv1      = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation)

        self.m          = nn.ModuleList([nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes])

        conv2_channels  = hidden_channels * (len(kernel_sizes) + 1)

        self.conv2      = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation)

    def forward(self, x):

        x = self.conv1(x)

        x = torch.cat([x] + [m(x) for m in self.m], dim=1)

        x = self.conv2(x)

        return x

class Bottleneck(nn.Module):

    # Standard bottleneck

    def __init__(self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act="silu",):

        super().__init__()

        hidden_channels = int(out_channels * expansion)

        Conv = DWConv if depthwise else BaseConv

        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)

        self.conv2 =外汇跟单gendan5.com Conv(hidden_channels, out_channels, 3, stride=1, act=act)

        self.use_add = shortcut and in_channels == out_channels

    def forward(self, x):

        y = self.conv2(self.conv1(x))

        if self.use_add:

            y = y + x

        return y

class CSPLayer(nn.Module):

    def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu",):

        # ch_in, ch_out, number, shortcut, groups, expansion

        super().__init__()

        hidden_channels = int(out_channels * expansion)  # hidden channels

        self.conv1  = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)

        self.conv2  = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)

        self.conv3  = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)

        module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in range(n)]

        self.m      = nn.Sequential(*module_list)

    def forward(self, x):

        x_1 = self.conv1(x)

        x_2 = self.conv2(x)

        x_1 = self.m(x_1)

        x = torch.cat((x_1, x_2), dim=1)

        return self.conv3(x)

class CSPDarknet(nn.Module):

    def __init__(self, dep_mul, wid_mul, out_features=("dark3", "dark4", "dark5"), depthwise=False, act="silu",):

        super().__init__()

        assert out_features, "please provide output features of Darknet"

        self.out_features = out_features

        Conv = DWConv if depthwise else BaseConv

        base_channels   = int(wid_mul * 64)  # 64

        base_depth      = max(round(dep_mul * 3), 1)  # 3

        # stem

        self.stem = Focus(3, base_channels, ksize=3, act=act)

        # dark2

        self.dark2 = nn.Sequential(

            Conv(base_channels, base_channels * 2, 3, 2, act=act),

            CSPLayer(base_channels * 2, base_channels * 2, n=base_depth, depthwise=depthwise, act=act),

        )

        # dark3

        self.dark3 = nn.Sequential(

            Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),

            CSPLayer(base_channels * 4, base_channels * 4, n=base_depth * 3, depthwise=depthwise, act=act),

        )

        # dark4

        self.dark4 = nn.Sequential(

            Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),

            CSPLayer(base_channels * 8, base_channels * 8, n=base_depth * 3, depthwise=depthwise, act=act),

        )

        # dark5

        self.dark5 = nn.Sequential(

            Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),

            SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),

            CSPLayer(base_channels * 16, base_channels * 16, n=base_depth, shortcut=False, depthwise=depthwise, act=act),

        )

    def forward(self, x):

        outputs = {}

        x = self.stem(x)

        outputs["stem"] = x

        x = self.dark2(x)

        outputs["dark2"] = x

        x = self.dark3(x)

        outputs["dark3"] = x

        x = self.dark4(x)

        outputs["dark4"] = x

        x = self.dark5(x)

        outputs["dark5"] = x

        return {k: v for k, v in outputs.items() if k in self.out_features}

阅读(1416) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~