Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3666010
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2021-08-06 17:22:20

def adjust_input(in_data):#调整输入

    """

        adjust the input from (h, w, c) to ( 1, c, h, w) for network input

    Parameters:

    ----------

        in_data: numpy array of shape (h, w, c)

            input data

    Returns:

    -------

        out_data: numpy array of shape (1, c, h, w)

            reshaped array

    """

    if in_data.dtype is not np.dtype('float32'):

        out_data = in_data.astype(np.float32)

    else:

        out_data = in_data

    out_data = out_data.transpose((2,0,1))

    out_data = np.expand_dims(out_data, 0)

    out_data = (out_data - 127.5)*0.0078125

    return out_data

def generate_bbox(map, reg, scale, threshold):#生成bbox

     """

         generate bbox from feature map

     Parameters:

     ----------

         map: numpy array , n x m x 1

             detect score for each position

         reg: numpy array , n x m x 4

             bbox

         scale: float number

             scale of this detection

         threshold: float number

             detect threshold

     Returns:

     -------

         bbox array

     """

     stride = 2

     cellsize = 12

     t_index = np.where(map>threshold)

     # find nothing

     if t_index[0].size == 0:

         return np.array([])

     dx1, dy1, dx2, dy2 = [reg[0, i, t_index[0], t_index[1]] for i in range(4)]

     reg = np.array([dx1, dy1, dx2, dy2])

     score = map[t_index[0], t_index[1]]

     boundingbox = np.vstack([np.round((stride*t_index[1]+1)/scale),

                              np.round((stride*t_index[0]+1)/scale),

                              np.round((stride*t_index[1]+1+cellsize)/scale),

                              np.round((stride*t_index[0]+1+cellsize)/scale),

                              score,

                              reg])

     return boundingbox.T

def detect_first_stage(img, net, scale, threshold):#检测第一阶段

    """

        run PNet for first stage

    Parameters:

    ----------

        img: numpy array, bgr order

            input image

        scale: float number

            how much should the input image scale

        net: PNet

            worker

    Returns:

    -------

        total_boxes : bboxes

    """

    height, width, _ = img.shape

    hs = int(math.ceil(height * scale))

    ws = int(math.ceil(width * scale))

    im_data = cv2.resize(img, (ws,hs))

    # adjust for the network input

    input_buf = adjust_input(im_data)

    output = net.predict(input_buf)

    boxes = generate_bbox(output[1][0,1,:,:], output[0], scale, threshold)

    if boxes.size == 0:

        return None

    # nms

    pick = nms(boxes[:,0:5], 0.5, mode='Union')

    boxes = boxes[pick]

    return boxes

def detect_first_stage_warpper( args ):

    return detect_first_stage(*args)

阅读(897) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~