Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3648438
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2021-06-17 17:36:24

"""

# File       : mask_check.py

# Time       2021/6/10 15:02

# Author     Meng

# version    python 3.6

# Description

"""

import cv2          # 导入opencv

import time         # 导入time

"""实现鼻子检测"""

def nose_dection(img):

    img = cv2.GaussianBlur(img,(5,5),0)#高斯滤波

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)                     # 将图片转化成灰度

    nose_cascade = cv2.CascadeClassifier("haarcascade_mcs_nose.xml")

    nose_cascade.load("data/haarcascades/haarcascade_mcs_nose.xml")  # 一定要告诉编译器文件所在的具体位置

    '''此文件是opencvhaar鼻子特征分类器'''

    noses = nose_cascade.detectMultiScale(gray, 1.3, 5)  # 鼻子检测

    for(x,y,w,h) in noses:

        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)  # 画框标识脸部

    flag = 0            # 检测到鼻子的标志位,如果监测到鼻子,则判断未带口罩

    if len(noses)>0:

        flag = 1

    return img,flag

""""实现眼睛检测"""

def eye_dection(img):

    img = cv2.GaussianBlur(img,(5,5),0)#高斯滤波

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)                     # 将图片转化成灰度

    eyes_cascade = cv2.CascadeClassifier("haarcascade_eye_tree_eyeglasses.xml")

    eyes_cascade.load("data/haarcascades/haarcascade_eye_tree_eyeglasses.xml")  # 一定要告诉编译器文件所在的具体位置

    '''此文件是opencvhaar眼镜特征分类器'''

    eyes = eyes_cascade.detectMultiScale(gray, 1.3, 5)          # 眼睛检测

    for (x,y,w,h) in eyes:

        frame = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)  # 画框标识眼部

        print("x y w h is",(x,y,w,h))

        # frame = cv2.rectangle(img, (x, y+h), (x + 3*w, y + 3*h), (255, 0, 0), 2)  # 画框标识眼部

    return img,eyes

def empty(a):

    pass

def main():

    image = cv2.imread("images/backgound.png")      # 读取背景照片

    cv2.imshow('skin', image)                       # 展示

    cv2.createTrackbar("Hmin", "skin", 0, 90, empty)    # 创建bar

    cv2.createTrackbar("Hmax", "skin", 25, 90, empty)

    capture = cv2.VideoCapture(0)               # 打开摄像头,其中0为自带摄像头,

    while True:

        ref,img=capture.read()                  # 打开摄像头

        # img = cv2.imread("./images/005.jpg")      # 读取一张图片

        img_hsv = img

        image_nose,flag_nose = nose_dection(img)       # 进行口罩检测,返回检测之后的图形以及标志位

        if flag_nose == 1:              # 当检测到鼻子的时候,判断未戴口罩

            frame = cv2.putText(image_nose, "NO MASK", (10, 30), cv2.FONT_HERSHEY_COMPLEX, 0.9,(0, 0, 255), 1)  # 在图片上写字

            cv2.imshow('img', image_nose)       # 展示图片

        if flag_nose == 0:              # 未检测鼻子,进行眼睛检测

            img_eye,eyes = eye_dection(img)         # 进行眼睛检测,返回检测之后的图形以及标志位

            hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)        # 将图片转化成HSV格式

            H, S, V = cv2.split(hsv)                          #

            minH = cv2.getTrackbarPos("Hmin", 'skin')           # 获取bar

            maxH = cv2.getTrackbarPos("Hmax", 'skin')

            if minH > maxH:

                maxH = minH

            thresh_h = cv2.inRange(H, minH, maxH)       # 提取人体肤色区域

            if len(eyes) > 1:                           # 判断是否检测到两个眼睛,其中eyes[0]为左眼坐标

                # 口罩区域的提取

                mask_x_begin = min(eyes[0][0],eyes[1][0])               # 把左眼的x坐标作为口罩区域起始x坐标

                mask_x_end = max(eyes[0][0],eyes[1][0]) + eyes[list([eyes[0][0], eyes[1][0]]).index(max(list([eyes[0][0], eyes[1][0]])))][2]   # 把右眼x坐标 + 右眼宽度作为口罩区域x的终止坐标

                mask_y_begin = max(eyes[0][1] + eyes[0][3],eyes[1][1] + eyes[1][3]) + 20    # 把眼睛高度最大的作为口罩区域起始y坐标

                if mask_y_begin > img_eye.shape[1]:     # 判断是否出界

                    mask_y_begin = img_eye.shape[1]

                mask_y_end = max(eyes[0][1] + 3 * eyes[0][3],eyes[1][1] + 3 * eyes[1][3]) + 20  # 同理

                if mask_y_end > img_eye.shape[1]:

                    mask_y_end = img_eye.shape[1]

                frame = cv2.rectangle(img_eye, (mask_x_begin, mask_y_begin), (mask_x_end, mask_y_end), (255, 0, 0), 2)  # 画口罩区域的框

                total_mask_pixel = 0

                total_face_pixel = 0

                # 遍历二值图,为0total_mask_pixel+1,否则total_face_pixel+1

                for i in range(mask_x_begin,mask_x_end):

                    for j in range(mask_y_begin,mask_y_end):

                        if thresh_h[i,j] == 0:

                            total_mask_pixel += 1

                        else:

                            total_face_pixel += 1

                print("total_mask_pixel",total_mask_pixel)

                print("total_face_pixel", total_face_pixel)

                if total_mask_pixel > total_face_pixel:

                    frame = cv2.putText(img_eye, "HAVE MASK", (mask_x_begin, mask_y_begin - 10),cv2.FONT_HERSHEY_COMPLEX, 0.9, (0, 0, 255), 1)  # 绘制

                if total_mask_pixel < total_face_pixel:

                    frame = cv2.putText(img_eye, "NO MASK", (mask_x_begin, mask_y_begin - 10), cv2.FONT_HERSHEY_COMPLEX,0.9, (0, 0, 255), 1)  # 绘制

            cv2.imshow("skin", thresh_h)  # 显示肤色图

            cv2.imshow("img", img_eye)  # 显示肤色图

            # cv2.imwrite('005_result.jpg',img_eye)     保存图片

        c = cv2.waitKey(10)

        if c==27:

            break

    capture.release()       #

    cv2.destroyAllWindows() # 关闭所有窗口

if __name__ == '__main__':

    main()

阅读(1866) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~