Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3648323
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2021-04-12 17:06:54

#!/usr/bin/python

# -*- coding: UTF-8 -*-  

import matplotlib.pyplot as plt

import math

show_animation = True

class Dijkstra:

    def __init__(self, ox, oy, resolution, robot_radius):

        """

        Initialize map for planning

        ox: x position list of Obstacles [m]

        oy: y position list of Obstacles [m]

        resolution: grid resolution [m]

        rr: robot radius[m]

        """

        self.min_x = None

        self.min_y = None

        self.max_x = None

        self.max_y = None

        self.x_width = None

        self.y_width = None

        self.obstacle_map = None

        self.resolution = resolution

        self.robot_radius = robot_radius

        #构建栅格地图

        self.calc_obstacle_map(ox, oy)

        self.motion = self.get_motion_model()

    class Node:

        def __init__(self, x, y, cost, parent_index):

            self.x = x  # index of grid

            self.y = y  # index of grid

            self.cost = cost  # g(n)

            self.parent_index = parent_index  

            # index of previous Node

        def __str__(self):

            return str(self.x) + "," + str(self.y) + "," + str(

                self.cost) + "," + str(self.parent_index)

    def planning(self, sx, sy, gx, gy):

        """

        dijkstra path search

        input:

            s_x: start x position [m]

            s_y: start y position [m]

            gx: goal x position [m]

            gx: goal x position [m]

        output:

            rx: x position list of the final path

            ry: y position list of the final path

        """

        #将起点和终点转换为节点形式,即包含下标,代价值和父节点信息

        start_node = self.Node(self.calc_xy_index(sx, self.min_x),

                               self.calc_xy_index(sy, self.min_y), 0.0, -1)   

                               # round((position - minp) / self.resolution)

        goal_node = self.Node(self.calc_xy_index(gx, self.min_x),

                              self.calc_xy_index(gy, self.min_y), 0.0, -1)

        open_set, closed_set = dict(), dict()     # key - value: hash

        #key是表示索引,value 是节点信息

        open_set[self.calc_index(start_node)] = start_node

        while 1:

            c_id = min(open_set, key=lambda o: open_set[o].cost)  

            # cost最小的节点

            current = open_set[c_id]

            # show graph  动画仿真

            if show_animation:  # pragma: no cover

                plt.plot(self.calc_position(current.x, self.min_x),

                         self.calc_position(current.y, self.min_y), "xc")

                # for stopping simulation with the esc key.

                plt.gcf().canvas.mpl_connect(

                    'key_release_event',

                    lambda event: [exit(0) if event.key == 'escape' else None])

                if len(closed_set.keys()) % 10 == 0:

                    plt.pause(0.001)

            # 判断是否是终点

            if current.x == goal_node.x and current.y == goal_node.y:

                print("Find goal")

                goal_node.parent_index = current.parent_index

                goal_node.cost = current.cost

                break

            # Remove the item from the open set

            del open_set[c_id]

            # Add it to the closed set

            closed_set[c_id] = current

            # expand search grid based on motion model

            for move_x, move_y, move_cost in self.motion:

                node = self.Node(current.x + move_x,

                                 current.y + move_y,

                                 current.cost + move_cost, c_id)

                n_id = self.calc_index(node)

                if n_id in closed_set:

                    continue

                if not self.verify_node(node):

                    continue

                if n_id not in open_set:

                    open_set[n_id] = node  # Discover a new node

                else:

                    if open_set[n_id].cost >= node.cost:

                        # This path is the best until now. record it!

                        open_set[n_id] = node

        rx, ry = self.calc_final_path(goal_node, closed_set)

        return rx, ry

    #通过父节点追溯从起点到终点的最佳路径

    def calc_final_path(self, goal_node, closed_set):

        # generate final course

        rx, ry = [self.calc_position(goal_node.x, self.min_x)], [

            self.calc_position(goal_node.y, self.min_y)]

        parent_index = goal_node.parent_index

        while parent_index != -1:

            n = closed_set[parent_index]

            rx.append(self.calc_position(n.x, self.min_x))

            ry.append(self.calc_position(n.y, self.min_y))

            parent_index = n.parent_index

        return rx, ry

    def calc_position(self, index, minp):

        pos = index * self.resolution + minp

        return pos

    def calc_xy_index(self, position, minp):

        return round((position - minp) / self.resolution)

    def calc_index(self, node):

        return node.y * self.x_width + node.x

    #检查是否超出地图范围或有障碍物

    def verify_node(self, node):

        px = self.calc_position(node.x, self.min_x)

        py = self.calc_position(node.y, self.min_y)

        if px < self.min_x:

            return False

        if py < self.min_y:

            return False

        if px >= self.max_x:

            return False

        if py >= self.max_y:

            return False

        if self.obstacle_map[int(node.x)][int(node.y)]:

            return False

        return True

    def calc_obstacle_map(self, ox, oy):

        ''' 1步:构建栅格地图 '''

        self.min_x = round(min(ox))

        self.min_y = round(min(oy))

        self.max_x = round(max(ox))

        self.max_y = round(max(oy))

        print("min_x:", self.min_x)

        print("min_y:", self.min_y)

        print("max_x:", self.max_x)

        print("max_y:", self.max_y)

        #计算XY方向 栅格的个数

        self.x_width = round((self.max_x - self.min_x) / self.resolution)

        self.y_width = round((self.max_y - self.min_y) / self.resolution)

        print("x_width:", self.x_width)

        print("y_width:", self.y_width)

        # obstacle map generation

        # 初始化地图,货币代码地图是要用二维向量表示的,在这里采用两层列表来表示

        #初始化为false,内层为Y方向栅格的个数,外层为X方向栅格个数

        self.obstacle_map = [[False for _ in range(int(self.y_width))]

                             for _ in range(int(self.x_width))]

        # 设置障碍物

        for ix in range(int(self.x_width)):

            x = self.calc_position(ix, self.min_x)

            for iy in range(int(self.y_width)):

                y = self.calc_position(iy, self.min_y)

                for iox, ioy in zip(ox, oy):

                    #障碍物到栅格的距离,如果小于车体半径,就标记为true,障碍物膨胀

                    d = math.hypot(iox - x, ioy - y)

                    if d <= self.robot_radius:

                        self.obstacle_map[ix][iy] = True

                        break

    @staticmethod

    def get_motion_model():

        # dx, dy, cost

        #定义机器人行走的代价,以当前点为中心周围八个栅格的代价

        motion = [[1, 0, 1],

                  [0, 1, 1],

                  [-1, 0, 1],

                  [0, -1, 1],

                  [-1, -1, math.sqrt(2)],

                  [-1, 1, math.sqrt(2)],

                  [1, -1, math.sqrt(2)],

                  [1, 1, math.sqrt(2)]]

        return motion

def main():

    # start and goal position

    sx = -5.0  # [m]

    sy = -5.0  # [m]

    gx = 50.0  # [m]

    gy = 50.0  # [m]

    grid_size = 2.0  # [m]

    robot_radius = 1.0  # [m]

    # set obstacle positions

    ox, oy = [], []

    for i in range(-10, 60):

        ox.append(i)

        oy.append(-10.0)

    for i in range(-10, 60):

        ox.append(60.0)

        oy.append(i)

    for i in range(-10, 61):

        ox.append(i)

        oy.append(60.0)

    for i in range(-10, 61):

        ox.append(-10.0)

        oy.append(i)

    for i in range(-10, 40):

        ox.append(20.0)

        oy.append(i)

    for i in range(0, 40):

        ox.append(40.0)

        oy.append(60.0 - i)

    if show_animation:  # pragma: no cover

        plt.plot(ox, oy, ".k")

        plt.plot(sx, sy, "og")

        plt.plot(gx, gy, "xb")

        plt.grid(True)

        plt.axis("equal")

    dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)

    rx, ry = dijkstra.planning(sx, sy, gx, gy)

    if show_animation:  # pragma: no cover

        plt.plot(rx, ry, "-r")

        plt.pause(0.01)

        plt.show()

if __name__ == '__main__':

    main()

阅读(1422) | 评论(0) | 转发(0) |
0

上一篇:K-means实战(一)

下一篇:python编写简易邮箱

给主人留下些什么吧!~~