Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3648337
  • 博文数量: 365
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 2522
  • 用 户 组: 普通用户
  • 注册时间: 2019-10-28 13:40
文章分类

全部博文(365)

文章存档

2023年(8)

2022年(130)

2021年(155)

2020年(50)

2019年(22)

我的朋友

分类: Python/Ruby

2021-03-18 17:23:19

def reduce_mem_usage(df):

    start_mem = df.memory_usage().sum() / 1024**2

    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))

    for col in df.columns:

        col_type = df[col].dtype

        if col_type != object:

            c_min = df[col].min()

            c_max = df[col].max()

            if str(col_type)[:3] == 'int':

                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:

                    df[col] = df[col].astype(np.int8)

                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:

                    df[col] = df[col].astype(np.int16)

                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:

                    df[col] = df[col].astype(np.int32)

                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:

                    df[col] = df[col].astype(np.int64)  

            else:

                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:

                    df[col] = df[col].astype(np.float16)

                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:

                    df[col] = df[col].astype(np.float32)

                else:

                    df[col] = df[col].astype(np.float64)

        else:

            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() / 1024**2

    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))

    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))

    return df

DataFrame.values()返回DataFrameNumpy表示形式。

# 简单预处理

train_list = []

for items in train.values:

    train_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])

train = pd.DataFrame(np.array(train_list))

train.columns = ['id'] + ['s_'+str(i) for i in range(len(train_list[0])-2)] + ['label']

train = reduce_mem_usage(train)

test_list=[]

for items in test.values:

    test_list.append([items[0]] + [float(i) for i in items[1].split(',')])

test = pd.DataFrame(np.array(test_list))

test.columns = ['id'] + ['s_'+str(i) for i in range(len(test_list[0])-1)]

test = reduce_mem_usage(test)

Memory usage of dataframe is 157.93 MB

Memory usage after optimization is: 39.67 MB

Decreased by 74.9%

Memory usage of dataframe is 31.43 MB

Memory usage after optimization is: 7.90 MB

Decreased by 74.9%

train.head()

阅读(16856) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~