一、概述
LeakCanary是一款非常常见的内存泄漏检测工具。经过一系列的变更升级,LeakCanary来到了2.0版本。2.0版本实现内存监控的基本原理和以往版本差异不大,比较重要的一点变化是2.0版本使用了自己的hprof文件解析器,不再依赖于HAHA,整个工具使用的语言也由Java切换到了Kotlin。本文结合源码对2.0版本的内存泄漏监控基本原理和hprof文件解析器实现原理做一个简单地分析介绍。
1.1 新旧差异
1.1.1 .接入方法
新版:只需要在gradle配置即可。
-
dependencies {
-
// debugImplementation because LeakCanary should only run in debug builds.
-
debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.5'
-
}
旧版:1)gradle配置;2)Application 中初始化 LeakCanary.install(this) 。
敲黑板:
1)Leakcanary2.0版本的初始化在App进程拉起时自动完成;
2)初始化源代码:
-
internal sealed class AppWatcherInstaller : ContentProvider() {
-
-
/**
-
* [MainProcess] automatically sets up the LeakCanary code that runs in the main app process.
-
*/
-
internal class MainProcess : AppWatcherInstaller()
-
-
/**
-
* When using the `leakcanary-android-process` artifact instead of `leakcanary-android`,
-
* [LeakCanaryProcess] automatically sets up the LeakCanary code
-
*/
-
internal class LeakCanaryProcess : AppWatcherInstaller()
-
-
override fun onCreate(): Boolean {
-
val application = context!!.applicationContext as Application
-
AppWatcher.manualInstall(application)
-
return true
-
}
-
//....
-
}
3)原理:ContentProvider的onCreate在Application的onCreate之前执行,因此在App进程拉起时会自动执行 AppWatcherInstaller 的onCreate生命周期,利用Android这种机制就可以完成自动初始化;
4)拓展:ContentProvider的onCreate方法在主进程中调用,因此一定不要执行耗时操作,不然会拖慢App启动速度。
1.1.2 整体功能
Leakcanary2.0版本开源了自己实现的hprof文件解析以及泄漏引用链查找的功能模块(命名为shark),后续章节会重点介绍该部分的实现原理。
1.2 整体架构
Leakcanary2.0版本主要增加了shark部分。
二、源码分析
LeakCananry自动检测步骤:
-
检测可能泄漏的对象;
-
堆快照,生成hprof文件;
-
分析hprof文件;
-
对泄漏进行分类。
2.1 检测实现
自动检测的对象包含以下四类:
-
销毁的Activity实例
-
销毁的Fragment实例\
-
销毁的View实例
-
清除的ViewModel实例
另外,LeakCanary也会检测 AppWatcher 监听的对象:
-
AppWatcher.objectWatcher.watch(myDetachedView, "View was detached")
2.1.1 LeakCanary初始化
AppWatcher.config :其中包含是否监听Activity、Fragment等实例的开关;
Activity的生命周期监听:注册 Application.ActivityLifecycleCallbacks ;
Fragment的生命周期期监听:同样,册 FragmentManager.FragmentLifecycleCallbacks ,但Fragment较为复杂,因为Fragment有三种,即android.app.Fragment、androidx.fragment.app.Fragment、android.support.v4.app.Fragment,因此需要注册各自包下的FragmentManager.FragmentLifecycleCallbacks;
ViewModel的监听:由于ViewModel也是androidx下面的特性,因此其依赖androidx.fragment.app.Fragment的监听;
监听Application的可见性:不可见时触发HeapDump,检查存活对象是否存在泄漏。有Activity触发onActivityStarted则程序可见,Activity触发onActivityStopped则程序不可见,因此监听可见性也是注册 Application.ActivityLifecycleCallbacks 来实现的。
-
//InternalAppWatcher初始化
-
fun install(application: Application) {
-
-
......
-
-
val configProvider = { AppWatcher.config }
-
ActivityDestroyWatcher.install(application, objectWatcher, configProvider)
-
FragmentDestroyWatcher.install(application, objectWatcher, configProvider)
-
onAppWatcherInstalled(application)
-
}
-
-
//InternalleakCanary初始化
-
override fun invoke(application: Application) {
-
_application = application
-
checkRunningInDebuggableBuild()
-
-
AppWatcher.objectWatcher.addOnObjectRetainedListener(this)
-
-
val heapDumper = AndroidHeapDumper(application, createLeakDirectoryProvider(application))
-
-
val gcTrigger = GcTrigger.Default
-
-
val configProvider = { LeakCanary.config }
-
//异步线程执行耗时操作
-
val handlerThread = HandlerThread(LEAK_CANARY_THREAD_NAME)
-
handlerThread.start()
-
val backgroundHandler = Handler(handlerThread.looper)
-
-
heapDumpTrigger = HeapDumpTrigger(
-
application, backgroundHandler, AppWatcher.objectWatcher, gcTrigger, heapDumper,
-
configProvider
-
)
-
//Application 可见性监听
-
application.registerVisibilityListener { applicationVisible ->
-
this.applicationVisible = applicationVisible
-
heapDumpTrigger.onApplicationVisibilityChanged(applicationVisible)
-
}
-
registerResumedActivityListener(application)
-
addDynamicShortcut(application)
-
-
disableDumpHeapInTests()
-
}
2.1.2 如何检测泄漏
1)对象的监听者ObjectWatcher
ObjectWatcher 的关键代码:
-
@Synchronized fun watch(
-
watchedObject: Any,
-
description: String
-
) {
-
if (!isEnabled()) {
-
return
-
}
-
removeWeaklyReachableObjects()
-
val key = UUID.randomUUID()
-
.toString()
-
val watchUptimeMillis = clock.uptimeMillis()
-
val reference =
-
KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
-
SharkLog.d {
-
"Watching " +
-
(if (watchedObject is Class<*>) watchedObject.toString() else "instance of ${watchedObject.javaClass.name}") +
-
(if (description.isNotEmpty()) " ($description)" else "") +
-
" with key $key"
-
}
-
-
watchedObjects[key] = reference
-
checkRetainedExecutor.execute {
-
moveToRetained(key)
-
}
-
}
关键类KeyedWeakReference:弱引用WeakReference和ReferenceQueue的联合使用,参考KeyedWeakReference的父类WeakReference的构造方法。
这种使用可以实现如果弱引用关联的的对象被回收,则会把这个弱引用加入到queue中,利用这个机制可以在后续判断对象是否被回收。
2)检测留存的对象
-
private fun checkRetainedObjects(reason: String) {
-
val config = configProvider()
-
// A tick will be rescheduled when this is turned back on.
-
if (!config.dumpHeap) {
-
SharkLog.d { "Ignoring check for retained objects scheduled because $reason: LeakCanary.Config.dumpHeap is false" }
-
return
-
}
-
-
//第一次移除不可达对象
-
var retainedReferenceCount = objectWatcher.retainedObjectCount
-
-
if (retainedReferenceCount > 0) {
-
//主动出发GC
-
gcTrigger.runGc()
-
//第二次移除不可达对象
-
retainedReferenceCount = objectWatcher.retainedObjectCount
-
}
-
-
//判断是否还有剩余的监听对象存活,且存活的个数是否超过阈值
-
if (checkRetainedCount(retainedReferenceCount, config.retainedVisibleThreshold)) return
-
-
....
-
-
SharkLog.d { "Check for retained objects found $retainedReferenceCount objects, dumping the heap" }
-
dismissRetainedCountNotification()
-
dumpHeap(retainedReferenceCount, retry = true)
-
}
检测主要步骤:
-
第一次移除不可达对象:移除 ReferenceQueue 中记录的KeyedWeakReference 对象(引用着监听的对象实例);
-
主动触发GC:回收不可达的对象;
-
第二次移除不可达对象:经过一次GC后可以进一步导致只有WeakReference持有的对象被回收,因此再一次移除ReferenceQueue 中记录的KeyedWeakReference 对象;
-
判断是否还有剩余的监听对象存活,且存活的个数是否超过阈值;
-
若满足上面的条件,则抓取Hprof文件,实际调用的是android原生的Debug.dumpHprofData(heapDumpFile.absolutePath) ;
-
启动异步的HeapAnalyzerService 分析hprof文件,找到泄漏的GcRoot链路,这个也是后面的主要内容。
-
//HeapDumpTrigger
-
private fun dumpHeap(
-
retainedReferenceCount: Int,
-
retry: Boolean
-
) {
-
-
....
-
-
HeapAnalyzerService.runAnalysis(application, heapDumpFile)
-
}
2.2 Hprof 文件解析
解析入口:
-
//HeapAnalyzerService
-
private fun analyzeHeap(
-
heapDumpFile: File,
-
config: Config
-
): HeapAnalysis {
-
val heapAnalyzer = HeapAnalyzer(this)
-
-
val proguardMappingReader = try {
-
//解析混淆文件
-
ProguardMappingReader(assets.open(PROGUARD_MAPPING_FILE_NAME))
-
} catch (e: IOException) {
-
null
-
}
-
//分析hprof文件
-
return heapAnalyzer.analyze(
-
heapDumpFile = heapDumpFile,
-
leakingObjectFinder = config.leakingObjectFinder,
-
referenceMatchers = config.referenceMatchers,
-
computeRetainedHeapSize = config.computeRetainedHeapSize,
-
objectInspectors = config.objectInspectors,
-
metadataExtractor = config.metadataExtractor,
-
proguardMapping = proguardMappingReader?.readProguardMapping()
-
)
-
}
关于Hprof文件的解析细节,就需要牵扯到Hprof二进制文件协议:
通过阅读协议文档,hprof的二进制文件结构大概如下:
解析流程:
-
fun analyze(
-
heapDumpFile: File,
-
leakingObjectFinder: LeakingObjectFinder,
-
referenceMatchers: List<ReferenceMatcher> = emptyList(),
-
computeRetainedHeapSize: Boolean = false,
-
objectInspectors: List<ObjectInspector> = emptyList(),
-
metadataExtractor: MetadataExtractor = MetadataExtractor.NO_OP,
-
proguardMapping: ProguardMapping? = null
-
): HeapAnalysis {
-
val analysisStartNanoTime = System.nanoTime()
-
-
if (!heapDumpFile.exists()) {
-
val exception = IllegalArgumentException("File does not exist: $heapDumpFile")
-
return HeapAnalysisFailure(
-
heapDumpFile, System.currentTimeMillis(), since(analysisStartNanoTime),
-
HeapAnalysisException(exception)
-
)
-
}
-
-
return try {
-
listener.onAnalysisProgress(PARSING_HEAP_DUMP)
-
Hprof.open(heapDumpFile)
-
.use { hprof ->
-
val graph = HprofHeapGraph.indexHprof(hprof, proguardMapping)//建立gragh
-
val helpers =
-
FindLeakInput(graph, referenceMatchers, computeRetainedHeapSize, objectInspectors)
-
helpers.analyzeGraph(//分析graph
-
metadataExtractor, leakingObjectFinder, heapDumpFile, analysisStartNanoTime
-
)
-
}
-
} catch (exception: Throwable) {
-
HeapAnalysisFailure(
-
heapDumpFile, System.currentTimeMillis(), since(analysisStartNanoTime),
-
HeapAnalysisException(exception)
-
)
-
}
-
}
LeakCanary在建立对象实例Graph时,主要解析以下几种tag:
涉及到的GCRoot对象有以下几种:
2.2.1 构建内存索引(Graph内容索引)
LeakCanary会根据Hprof文件构建一个HprofHeapGraph 对象,该对象记录了以下成员变量:
-
interface HeapGraph {
-
val identifierByteSize: Int
-
/**
-
* In memory store that can be used to store objects this [HeapGraph] instance.
-
*/
-
val context: GraphContext
-
/**
-
* All GC roots which type matches types known to this heap graph and which point to non null
-
* references. You can retrieve the object that a GC Root points to by calling [findObjectById]
-
* with [GcRoot.id], however you need to first check that [objectExists] returns true because
-
* GC roots can point to objects that don't exist in the heap dump.
-
*/
-
val gcRoots: List<GcRoot>
-
/**
-
* Sequence of all objects in the heap dump.
-
*
-
* This sequence does not trigger any IO reads.
-
*/
-
val objects: Sequence<HeapObject> //所有对象的序列,包括类对象、实例对象、对象数组、原始类型数组
-
-
val classes: Sequence<HeapClass> //类对象序列
-
-
val instances: Sequence<HeapInstance> //实例对象数组
-
-
val objectArrays: Sequence<HeapObjectArray> //对象数组序列
-
-
val primitiveArrays: Sequence<HeapPrimitiveArray> //原始类型数组序列
-
}
为了方便快速定位到对应对象在hprof文件中的位置,
LeakCanary提供了内存索引HprofInMemoryIndex :
-
建立字符串索引hprofStringCache(Key-value):key是字符ID,value是字符串;
-
建立类名索引classNames(Key-value):key是类对象ID,value是类字符串ID;
-
建立实例索引instanceIndex(Key-value):key是实例对象ID,value是该对象在hprof文件中的位置以及类对象ID;
-
建立类对象索引classIndex(Key-value):key是类对象ID,value是其他字段的二进制组合(父类ID、实例大小等等);
-
建立对象数组索引objectArrayIndex(Key-value):key是类对象ID,value是其他字段的二进制组合(hprof文件位置等等);
-
建立原始数组索引primitiveArrayIndex(Key-value):key是类对象ID,value是其他字段的二进制组合(hprof文件位置、元素类型等等);
2.2.2 找到泄漏的对象
1)由于需要检测的对象被
com.squareup.leakcanary.KeyedWeakReference 持有,所以可以根据
com.squareup.leakcanary.KeyedWeakReference 类名查询到类对象ID;
2) 解析对应类的实例域,找到字段名以及引用的对象ID,即泄漏的对象ID;
2.2.3找到最短的GCRoot引用链
根据解析到的GCRoot对象和泄露的对象,在graph中搜索最短引用链,这里采用的是广度优先遍历的算法进行搜索的:
-
//PathFinder
-
private fun State.findPathsFromGcRoots(): PathFindingResults {
-
enqueueGcRoots()//1
-
-
val shortestPathsToLeakingObjects = mutableListOf<ReferencePathNode>()
-
visitingQueue@ while (queuesNotEmpty) {
-
val node = poll()//2
-
-
if (checkSeen(node)) {//2
-
throw IllegalStateException(
-
"Node $node objectId=${node.objectId} should not be enqueued when already visited or enqueued"
-
)
-
}
-
-
if (node.objectId in leakingObjectIds) {//3
-
shortestPathsToLeakingObjects.add(node)
-
// Found all refs, stop searching (unless computing retained size)
-
if (shortestPathsToLeakingObjects.size == leakingObjectIds.size) {//4
-
if (computeRetainedHeapSize) {
-
listener.onAnalysisProgress(FINDING_DOMINATORS)
-
} else {
-
break@visitingQueue
-
}
-
}
-
}
-
-
when (val heapObject = graph.findObjectById(node.objectId)) {//5
-
is HeapClass -> visitClassRecord(heapObject, node)
-
is HeapInstance -> visitInstance(heapObject, node)
-
is HeapObjectArray -> visitObjectArray(heapObject, node)
-
}
-
}
-
return PathFindingResults(shortestPathsToLeakingObjects, dominatedObjectIds)
-
}
1)GCRoot对象都入队;
2)队列中的对象依次出队,判断对象是否访问过,若访问过,则抛异常,若没访问过则继续;
3)判断出队的对象id是否是需要检测的对象,若是则记录下来,若不是则继续;
4)判断已记录的对象ID数量是否等于泄漏对象的个数,若相等则搜索结束,相反则继续;
5)根据对象类型(类对象、实例对象、对象数组对象),按不同方式访问该对象,解析对象中引用的对象并入队,并重复2)。
入队的元素有相应的数据结构ReferencePathNode ,原理是链表,可以用来反推出引用链。
三、总结
Leakcanary2.0较之前的版本最大变化是改由kotlin实现以及开源了自己实现的hprof解析的代码,总体的思路是根据hprof文件的二进制协议将文件的内容解析成一个图的数据结构,当然这个结构需要很多细节的设计,本文并没有面面俱到,然后广度遍历这个图找到最短路径,路径的起始就是GCRoot对象,结束就是泄漏的对象。至于泄漏的对象的识别原理和之前的版本并没有差异。
作者:vivo 互联网客户端团队-Li Peidong
阅读(2336) | 评论(0) | 转发(0) |