分类: LINUX
2014-03-03 16:11:58
原文地址:linux内核链表分析 作者:chenmeng11
链表是内核中使用最多的数据结构之一,最新的内核(2.6.39中)该数据结构定义在
struct list_head {
struct list_head *next, *prev;
};
在
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) /
struct list_head name = LIST_HEAD_INIT(name) //定义一个链表且用初始化指向自己,静态初始化一个链表
static inline void INIT_LIST_HEAD(struct list_head *list) //动态的初始化一个链表,和上面的效果相同
{
list->next = list;
list->prev = list;
}
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
链表是内核中使用最多的数据结构之一,最新的内核(2.6.39中)该数据结构定义在
struct list_head {
struct list_head *next, *prev;
};
在
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) /
struct list_head name = LIST_HEAD_INIT(name) //定义一个链表且用初始化指向自己,静态初始化一个链表
static inline void INIT_LIST_HEAD(struct list_head *list) //动态的初始化一个链表,和上面的效果相同
{
list->next = list;
list->prev = list;
}
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif
void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
WARN(next->prev != prev,
"list_add corruption. next->prev should be "
"prev (%p), but was %p. (next=%p)./n",
prev, next->prev, next);
WARN(prev->next != next,
"list_add corruption. prev->next should be "
"next (%p), but was %p. (prev=%p)./n",
next, prev->next, prev);
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
EXPORT_SYMBOL(__list_add);
struct list_head *prev,
struct list_head *next);
#endif
//下面是定义了 CONFIG_DEBUG_LIST时的函数定义,其作用都是把new链接到prev 和next之间
void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
WARN(next->prev != prev,
"list_add corruption. next->prev should be "
"prev (%p), but was %p. (next=%p)./n",
prev, next->prev, next);
WARN(prev->next != next,
"list_add corruption. prev->next should be "
"next (%p), but was %p. (prev=%p)./n",
next, prev->next, prev);
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
EXPORT_SYMBOL(__list_add);
//下面这函数对上
链表是内核中使用最多的数据结构之一,最新的内核(2.6.39中)该数据结构定义在
struct list_head {
struct list_head *next, *prev;
};
在
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) /
struct list_head name = LIST_HEAD_INIT(name) //定义一个链表且用初始化指向自己,静态初始化一个链表
static inline void INIT_LIST_HEAD(struct list_head *list) //动态的初始化一个链表,和上面的效果相同
{
list->next = list;
list->prev = list;
}
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
链表是内核中使用最多的数据结构之一,最新的内核(2.6.39中)该数据结构定义在
struct list_head {
struct list_head *next, *prev;
};
在
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) /
struct list_head name = LIST_HEAD_INIT(name) //定义一个链表且用初始化指向自己,静态初始化一个链表
static inline void INIT_LIST_HEAD(struct list_head *list) //动态的初始化一个链表,和上面的效果相同
{
list->next = list;
list->prev = list;
}
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif
void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
WARN(next->prev != prev,
"list_add corruption. next->prev should be "
"prev (%p), but was %p. (next=%p)./n",
prev, next->prev, next);
WARN(prev->next != next,
"list_add corruption. prev->next should be "
"next (%p), but was %p. (prev=%p)./n",
next, prev->next, prev);
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
EXPORT_SYMBOL(__list_add);
struct list_head *prev,
struct list_head *next);
#endif
//下面是定义了 CONFIG_DEBUG_LIST时的函数定义,其作用都是把new链接到prev 和next之间
void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
WARN(next->prev != prev,
"list_add corruption. next->prev should be "
"prev (%p), but was %p. (next=%p)./n",
prev, next->prev, next);
WARN(prev->next != next,
"list_add corruption. prev->next should be "
"next (%p), but was %p. (prev=%p)./n",
next, prev->next, prev);
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
EXPORT_SYMBOL(__list_add);
//下面函数的封装,用与将new插入head和head->next之间
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
//下面函数的封装,用与将new插入head->prev和head之间
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
//下面的函数的式把prev和next指向的两个链表前后相连
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
//下面函数表达的是把一个链表前指向和后指向向联,这样其本身就在链表之外,因此就被断开链表
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif
//new替换old所在链表中old的位置,但old本身还前后指向还指向以前的位置
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
//new替换old所在链表中old的位置,并使old之心其自身
static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
//把entry指向链表节点从所在的链表中断开,且使其前后向指向其自身
static inline void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
}
//把list中其自身链表中断开并联入到head所在链表
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
}
//和上面函数相同,只是加入前后位置相反
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
}
//判断list是否是以head为起始的链表未节点
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
//判断一个链表是否为空
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
//严谨判断链表空,对前后指向都做判断
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
//在链表不为空的情况下,把head的next指向移到head->prev和head之间
static inline void list_rotate_left(struct list_head *head)
{
struct list_head *first;
if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}
//判断链表是否只有一个节点
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}