Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3508834
  • 博文数量: 1450
  • 博客积分: 11163
  • 博客等级: 上将
  • 技术积分: 11101
  • 用 户 组: 普通用户
  • 注册时间: 2005-07-25 14:40
文章分类

全部博文(1450)

文章存档

2017年(5)

2014年(2)

2013年(3)

2012年(35)

2011年(39)

2010年(88)

2009年(395)

2008年(382)

2007年(241)

2006年(246)

2005年(14)

分类: LINUX

2010-03-23 17:13:47

Kevin Lynx

Proactor和都 是并发编程中的设计模式。在我看来,他们都是用于派发/分离IO操作事件的。这里所谓的
IO事件也就是诸如read/write的IO操作。"派 发/分离"就是将单独的IO事件通知到上层模块。两个模式不同的地方
在于,Proactor用于异步IO,而Reactor用于同步IO。

摘抄一些关键的东西:

"
Two patterns that involve event demultiplexors are called Reactor and Proactor [1]. The Reactor patterns
involve synchronous I/O, whereas the Proactor pattern involves asynchronous I/O.
"

关于两个模式的大致模型,从以下文字基本可以明白:

"
An example will help you understand the difference between Reactor and Proactor. We will focus on the read
operation here, as the write implementation is similar. Here's a read in Reactor:

* An event handler declares interest in I/O events that indicate readiness for read on a particular socket ;
* The event demultiplexor waits for events ;
* An event comes in and wakes-up the demultiplexor, and the demultiplexor calls the appropriate handler;
* The event handler performs the actual read operation, handles the data read, declares renewed interest in
  I/O events, and returns control to the dispatcher .

By comparison, here is a read operation in Proactor (true async):

* A handler initiates an asynchronous read operation (note: the OS must support asynchronous I/O). In this
  case, the handler does not care about I/O readiness events, but is instead registers interest in receiving
  completion events;
* The event demultiplexor waits until the operation is completed ;
* While the event demultiplexor waits, the OS executes the read operation in a parallel kernel thread, puts
  data into a user-defined buffer, and notifies the event demultiplexor that the read is complete ;
* The event demultiplexor calls the appropriate handler;
* The event handler handles the data from user defined buffer, starts a new asynchronous operation, and returns
  control to the event demultiplexor.

"

可以看出,两个模式的相同点,都是对某个IO事件的事件通知(即告诉某个模块,这个IO操作可以进行或已经 完成)。在结构
上,两者也有相同点:demultiplexor负责提交IO操作(异步)、查询设备是否可操作(同步),然后当条件满足时,就回 调handler。
不同点在于,异步情况下(Proactor),当回调handler时,表示IO操作已经完成;同步情况下 (Reactor),回调handler时,表示
IO设备可以进行某个操作(can read or can write),handler这个时候开始提交操作。

用select模型写个简单的reactor,大致为:

///
class handler
{
public:
    
virtual void onRead() = 0;
    
virtual void onWrite() = 0;
    
virtual void onAccept() = 0;
}


class dispatch
{
public:
    
void poll()
    
{
        
// add fd in the set.
        
//
        
// poll every fd
        int c = select( 0&read_fd, &write_fd, 00 );
        
if( c > 0 )
        
{
            
for each fd in the read_fd_set
            
{    if fd can read
                    _handler
->onRead();
                
if fd can accept
                    _handler
->onAccept();
            }
 

            
for each fd in the write_fd_set
            
{
                
if fd can write
                    _handler
->onWrite();
            }

        }

    }
 

    
void setHandler( handler *_h )
    
{
        _handler 
= _h;
    }
 

private:
    handler 
*_handler;
}


/// application
class MyHandler : public handler
{
public:
    
void onRead()
    
{
    }
 

    
void onWrite()
    
{
    }
 

    
void onAccept()
    
{
    }

}



在网上找了份Proactor模式比较正式的文档,其给出了一个总体的UML类图,比较全面:

proactor_uml

根据这份图我随便写了个例子代码:

class AsyIOProcessor
{
public:
    
void do_read()
    
{
        
//send read operation to OS
        
// read io finished.and dispatch notification
        _proactor->dispatch_read();
    }
 

private:
    Proactor 
*_proactor;
}


class Proactor
{
public:
    
void dispatch_read()
    
{
        _handlerMgr
->onRead();
    }
 

private:
    HandlerManager 
*_handlerMgr;
}


class HandlerManager
{
public:
    typedef std::list
<Handler*> HandlerList; 

public:
    
void onRead()
    
{
        
// notify all the handlers.
        std::for_each( _handlers.begin(), _handlers.end(), onRead );
    }
 

private:
    HandlerList 
*_handlers;
}


class Handler
{
public:
    
virtual void onRead() = 0;
}


// application level handler.
class MyHandler : public Handler
{
public:
    
void onRead() 
    
{
        
// 
    }

}



Reactor通过某种变形,可以将其改装为Proactor,在某些不支持异步IO的系统上,也可以隐藏 底层的实现,利于编写跨平台
代码。我们只需要在dispatch(也就是demultiplexor)中封装同步IO操作的代码,在上层,用户提 交自己的缓冲区到这一层,
这一层检查到设备可操作时,不像原来立即回调handler,而是开始IO操作,然后将操作结果放到用户缓冲区(读), 然后再
回调handler。这样,对于上层handler而言,就像是proactor一样。详细技法参见。

其实就设计模式而言,我个人觉得某个模式其实是没有完全固定的结构的。不能说某个模式里就肯定会有某个类, 类之间的
关系就肯定是这样。在实际写程序过程中也很少去特别地实现某个模式,只能说模式会给你更多更好的架构方案。

最近在看spserver的代码,看到别人提各种并发系统中的模式,有点眼红,于是才来扫扫盲。知道什么是leader follower模式
reactor, proactor,multiplexing,对于心中的那个网络库也越来越清晰。

最近还干了些离谱的事,写了传说中的字节流编码,用模板的方式实现,不但保持了扩展性,还少写很多代码;处 于效率考虑,
写了个static array容器(其实就是template class static_array { _Tp _con[size]),
加了iterator,遵循STL标准,可以结 合进STL的各个generic algorithm用,自我感觉不错。基础模块搭建完毕,解析了公司
服务器网络模块的消息,我是不是真的打算用 自己的网络模块重写我的验证服务器?在另一个给公司写的工具里,因为实在厌恶
越来越多的重复代码,索性写了几个宏,还真的做到了代码的自动生 成:D。

阅读(816) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~