一、子网掩码的计算
TCP/IP网间网技术产生于大型主流机环境中,它能发展到今天的规模是当初的设计者们始料未及的。网间网规模的迅速扩展对IP地址模式的威胁并不是它不能保证主机地址的唯一性,而是会带来两方面的负担:第一,巨大的网络地址管理开销;第二,网关寻径急剧膨胀。其中第二点尤为突出,寻径表的膨胀不仅会降低网关寻径效率(甚至可能使寻径表溢出,从而造成寻径故障),更重要的是将增加内外部路径刷新时的开销,从而加重网络负担。
因此,迫切需要寻求新的技术,以应付网间网规模增长带来的问题。仔细分析发现,网间网规模的增长在内部主要表现为网络地址的增减,因此解决问题的思路集中在:如何减少网络地址。于是IP网络地址的多重复用技术应运而生。通过复用技术,使若干物理网络共享同一IP网络地址,无疑将减少网络地址数。
子网编址(subnet addressing)技术,又叫子网寻径(subnet routing),英文简称subnetting,是最广泛使用的IP网络地址复用方式,目前已经标准化,并成为IP地址模式的一部分。
32位的IP地址分为两部分,即网络号和主机号,分别把他们叫做IP地址的“网间网部分”和“本地部分”。子网编址技术将“本地部分”进一步划分为“物理网络”部分和“主机”两部分,其中“物理网络”部分用于标识同一IP网络地址下的不同物理网络,常称为“掩码位”、“子网掩码号”,或者“子网掩码ID”,不同子网就是依据这个掩码ID来识别的。
按IP协议的子网标准规定,每一个使用子网的网点都选择一个32位的位模式,若位模式中的某位置1,则对应IP地址中的某位为网络地址(包括网络部分和子网掩码号)中的一位;若位模式中的某位置0,则对应IP地址中的某位为主机地址中的一位。
例如二进制位模式:11111111 11111111 11111111 00000000中,前三个字节全1,代表对应IP地址中最高的三个字节为网络地址;后一个字节全0,代表对应IP地址中最后的一个字节为主机地址。为了使用的方便,常常使用“点分整数表示法”来表示一个IP地址和子网掩码,例如B类地址子网掩码(11111111 11111111 1111111100000000)为:255.255.25.0。
IP协议关于子网掩码的定义提供一定的灵活性,允许子网掩码中的“0”和“1”位不连续。但是,这样的子网掩码给分配主机地址和理解寻径表都带来一定困难,并且,极少的路由器支持在子网中使用低序或无序的位,因此在实际应用中通常各网点采用连续方式的子网掩码。像255.255.255.64和255.255.255.160等一类的子网掩码不推荐使用
子网掩码与IP地址结合使用,可以区分出一个网络地址的网络号和主机号。例如:有一个C类地址为:192.9.200.13,按其IP地址类型,它的缺省子网掩码为:255.255.255.0,则它的网络号和主机号可按如下方法得到:
第1步,将IP地址192.9.200.13转换为二进制11000000 00001001 11001000 00001101
第2步,将子网掩码255.255.255.0转换为二进制11111111 11111111 11111111 00000000
第3步,将以上两个二进制数逻辑进行与(AND)运算,得出的结果即为网络部分。“11000000 00001001 11001000 00001101”与“11111111 11111111 11111111 00000000”进行“与”运算后得到“11000000 00001001 11001000 00000000”,即“192.9.200.0”,这就是这个IP地址的网络号,或者称“网络地址”。
第4步,将子网掩码的二进制值取反后,再与IP地址进行与(AND)运算,得到的结果即为主机部分。如将“00000000 00000000 00000000 11111111(子网掩码的取值)反”与“11000000 00001001 11001000 00001101”进行与运算后得到“00000000 00000000 00000000 00001101”,即“0.0.0.13”,这就是这个IP地址主机号(可简化为“13”)。
二、子网掩码的划分
如果要将一个网络划分成多个子网,如何确定这些子网的子网掩码和IP地址中的网络号和主机号呢?本节就要向大家介绍。子网划分的步骤如下:
第1步,将要划分的子网数目转换为2的m次方。如要分8个子网,8=23。如果不是愉好是2的多少次方,则取大为原则,如要划分为6个,则同样要考虑23。
第2步,将上一步确定的幂m按高序占用主机地址m位后,转换为十进制。如m为3表示主机位中有3位被划为“网络标识号”占用,因网络标识号应全为“1”,所以主机号对应的字节段为“11100000”。转换成十进制后为224,这就最终确定的子网掩码。如果是C类网,则子网掩码为255.255.255.224;如果是B类网,则子网掩码为255.255.224.0;如果是A类网,则子网掩码为255.224.0.0。
在这里,子网个数与占用主机地址位数有如下等式成立:2m≥n。其中,m表示占用主机地址的位数;n表示划分的子网个数。根据这些原则,将一个C类网络分成4个子网。
为了说明问题,现再举例。若我们用的网络号为192.9.200,则该C类网内的主机IP地址就是192.9.200.1~192.9.200.254,现将网络划分为4个子网,按照以上步骤:
4=22,则表示要占用主机地址的2个高序位,即为11000000,转换为十进制为192。这样就可确定该子网掩码为:192.9.200.192。4个子网的IP地址的划分是根据被网络号占住的两位排列进行的,这四个IP地址范围分别为:
(1)第1个子网的IP地址是从“11000000 00001001 11001000 00000001”到“11000000 00001001 11001000 00111110”,注意它们的最后8位中被网络号占住的两位都为“00”,因为主机号不能全为“0”和“1”,所以没有11000000 00001001 11001000 00000000和11000000 00001001 11001000 00111111这两个IP地址(下同)。注意实际上此时的主机号只有最后面的6位。对应的十进制IP地址范围为192.9.200.1~192.9.200.62。而这个子网的子网掩码(或网络地址)为 11000000 00001001 11001000 00000000,为192.9.200.0。
(2)第2个子网的IP地址是从“11000000 00001001 11001000 01000001”到“11000000 00001001 11001000 01111110” ,注意此时被网络号所占住的2位主机号为“01”。对应的十进制IP地址范围为192.9.200.65~192.9.200.126。对应这个子网的子网掩码(或网络地址)为 11000000 00001001 11001000 01000000,为192.9.200.64。
(3)第3个子网的IP地址是从“11000000 00001001 11001000 10000001”到“11000000 00001001 11001000 10111110” ,注意此时被网络号所占住的2位主机号为“10”。对应的十进制IP地址范围为192.9.200.129~192.9.200.190。对应这个子网的子网掩码(或网络地址)为 11000000 00001001 11001000 10000000,为192.9.200.128。
(4)第4个子网的IP地址是从“11000000 00001001 11001000 11000001”到“11000000 00001001 11001000 11111110” ,注意此时被网络号所占住的2位主机号为“11”。对应的十进制IP地址范围为192.9.200.193~192.9.200.254。对应这个子网的子网掩码(或网络地址)为 11000000 00001001 11001000 11000000,为192.9.200.192。
在此列出A、B、C三类网络子网数目与子网掩码的转换表,如表5.1所示,供参考。
表1 子网划分与子网掩码对应表
A类网络划分子网数与对应的子网掩码
子网数目 占用主机号位数 子网掩码 子网中可容纳的主机数
2 1 255.128.0.0 8388606
4 2 255.192.0.0 4194302
8 3 255.224.0.0 2097150
16 4 255.240.0.0 1048574
32 5 255.258.0.0 524286
64 6 255.253.0.0 262142
128 7 255.254.0.0 131070
256 8 255.255.0.0 65534
B类网络划分子网数与对应的子网掩码
子网数目 占用主机号位数 子网掩码 子网中可容纳的主机数
2 1 255.255.128.0 32766
4 2 255.255.192.0 16382
8 3 255.255.224.0 8190
16 4 255.255.240.0 4094
32 5 255.255.248.0 2046
64 6 255.255.252.0 1022
128 7 255.255.254.0 510
256 8 255.255.255.0 254
C类网络划分子网数与对应的子网掩码
子网数目 占用主机号位数 子网掩码 子网中可容纳的主机数
2 1 255.255.255.128 126
4 2 255.255.255.192 62
8 3 255.255.255.224 30
16 4 255.255.255.240 14
32 5 255.255.255.248 6
64 6 255.255.255.252 2
三、快速计算子网掩码的方法
最后介绍三种快速计算机子网掩码的方法。
1. 利用子网数来计算
在求子网掩码之前必须先搞清楚要划分的子网数目,以及每个子网内的所需主机数目。然后按以下基本步骤进行计算:
第1步,将子网数目转化为二进制来表示;
第2步,取得子网数二进制的位数(n);
第3步,取得该IP地址类的子网掩码,然后将其主机地址部分的的前n位置“1”,即得出该IP地址划分子网的子网掩码。
为了便于理解,现举例说明如下:现假如要将一B类IP地址168.195.0.0划分成27个子网,则它的子网掩码的计算机方法如下(对应以上各基本步骤):
第1步,首先要划分成27个子网,“27”的二进制为“11011”;
第2步,该子网数二进制为五位数,即n = 5;
第3步,将该B类地址的子网掩码255.255.0.0的主机号前5位全部置“1”,即可得到 255.255.248.0,这就是划分成 27个子网的B类IP地址 168.195.0.0的子网掩码。
2. 利用主机数来计算
利用主机数来计算子网掩码的方法与上类似,基本步骤如下:
第1步,将子网中需容纳的主机数转化为二进制;
第2步,如果主机数小于或等于254(因为要去掉保留的两个IP地址),则取得该主机的二进制位数,为n,这里肯定 n8,这就是说主机地址将占据不止8位。
第3步,将255.255.255.255的主机地址位数全部置1,然后从后向前的将n位全部置为 0,即为子网掩码值。
举例如下。如要将一B类IP地址为168.195.0.0的网络划分成若干子网,要求每个子网内有主机数为700台,则该子网掩码的计算方法如下(也是对应以上各基本步骤):
第1步,首先将子网中要求容纳的主机数“700”转换成二进制,得到1010111100。
第2步,计算出该二进制的位数为10位,即n = 10
第3步,将255.255.255.255从后向前的10位全部置“0”,得到的二进制数为“11111111.11111111.11111100.00000000”,转换成十进制后即为255.255.252.0,这就是该要划分成主机数为700的B类IP地址 168.195.0.0的子网掩码。
3. 子网ID增量计算法
其基本计算步骤如下:
第1步,将所需的子网数转换为二进制,如所需划分的子网数为“4”,则转换成成二进制为00000100;
第2步,取子网数的二进制中有效位数,即为向缺省子网掩码中加入的位数(既向主机ID中借用的位数)。如前面的00000100,有效位为“100”,为3位;
第3步,决定子网掩码。如IP地址为B类1129.20.0.0网络,则缺省子网掩码为:255.255.0.0,借用主机ID的3位以后变为:255.255.224(11100000)0,即将所借的位全表示为1,用作子网掩码。
第4步,将所借位的主机ID的起始位段最右边的“1”转换为十进制,即为每个子网ID之间的增量,如前面的借位的主机ID起始位段为“11100000”,最右边的“1”,转换成十进制后为25=32。
第5步,产生的子网ID数为:2m-2 (m为向缺省子网掩码中加入的位数),如本例向子网掩码中添加的位数为3,则可用子网ID数为:23-2=6个;
第6步,将上面产生的子网ID增量附在原网络ID之后的第一个位段,便形成第一个子网网络ID 129.20.32.0;
第7步,重复上步操作,在原子网ID基础上加上一个子网ID增量,依次类推,直到子网ID中的最后位段为缺省子网掩码位用主机ID位之后的最后一个位段值,这样就可得到所有的子网网络ID。如缺省子网掩码位用主机ID位之后的子网ID为255.255.224.0,其中的“224”为借用主机ID后子网ID的最后一位段值,所以当子网ID通过以上增加增量的方法得到129.20.224.0时便终止,不要再添加了。
阅读(676) | 评论(0) | 转发(0) |