Chinaunix首页 | 论坛 | 博客
  • 博客访问: 555158
  • 博文数量: 92
  • 博客积分: 2511
  • 博客等级: 少校
  • 技术积分: 932
  • 用 户 组: 普通用户
  • 注册时间: 2008-10-19 10:10
文章分类
文章存档

2011年(6)

2010年(27)

2009年(37)

2008年(22)

我的朋友

分类: LINUX

2011-04-10 15:01:30

:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://scudong.blogbus.com/logs/12008190.html

Linux® 中最常用的输入/输出(I/O)模型是同步 I/O。在这个模型中,当请求发出之后,应用程序就会阻塞,直到请求满足为止。这是很好的一种解决方案,因为调用应用程序在等待 I/O 请求完成时不需要使用任何中央处理单元(CPU)。但是在某些情况中,I/O 请求可能需要与其他进程产生交叠。可移植操作系统接口(POSIX)异步 I/O(AIO)应用程序接口(API)就提供了这种功能。在本文中,我们将对这个 API 概要进行介绍,并来了解一下如何使用它。

AIO 简介

Linux 异步 I/O 是 Linux 内核中提供的一个相当新的增强。它是 2.6 版本内核的一个标准特性,但是我们在 2.4 版本内核的补丁中也可以找到它。AIO 背后的基本思想是允许进程发起很多 I/O 操作,而不用阻塞或等待任何操作完成。稍后或在接收到 I/O 操作完成的通知时,进程就可以检索 I/O 操作的结果。

I/O 模型

在深入介绍 AIO API 之前,让我们先来探索一下 Linux 上可以使用的不同 I/O 模型。这并不是一个详尽的介绍,但是我们将试图介绍最常用的一些模型来解释它们与异步 I/O 之间的区别。图 1 给出了同步和异步模型,以及阻塞和非阻塞的模型。


图 1. 基本 Linux I/O 模型的简单矩阵
基本 Linux I/O 模型的简单矩阵 

每个 I/O 模型都有自己的使用模式,它们对于特定的应用程序都有自己的优点。本节将简要对其一一进行介绍。

同步阻塞 I/O

I/O 密集型与 CPU 密集型进程的比较

I/O 密集型进程所执行的 I/O 操作比执行的处理操作更多。CPU 密集型的进程所执行的处理操作比 I/O 操作更多。Linux 2.6 的调度器实际上更加偏爱 I/O 密集型的进程,因为它们通常会发起一个 I/O 操作,然后进行阻塞,这就意味着其他工作都可以在两者之间有效地交错进行。

最常用的一个模型是同步阻塞 I/O 模型。在这个模型中,用户空间的应用程序执行一个系统调用,这会导致应用程序阻塞。这意味着应用程序会一直阻塞,直到系统调用完成为止(数据传输完成或发生错误)。调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。

图 2 给出了传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用read系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read调用返回)。


图 2. 同步阻塞 I/O 模型的典型流程
同步阻塞 I/O 模型的典型流程 

从应用程序的角度来说,read调用会延续很长时间。实际上,在内核执行读操作和其他工作时,应用程序的确会被阻塞。

同步非阻塞 I/O

同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAINEWOULDBLOCK),如图 3 所示。


图 3. 同步非阻塞 I/O 模型的典型流程
同步非阻塞 I/O 模型的典型流程 

非阻塞的实现是 I/O 命令可能并不会立即满足,需要应用程序调用许多次来等待操作完成。这可能效率不高,因为在很多情况下,当内核执行这个命令时,应用程序必须要进行忙碌等待,直到数据可用为止,或者试图执行其他工作。正如图 3 所示的一样,这个方法可以引入 I/O 操作的延时,因为数据在内核中变为可用到用户调用read返回数据之间存在一定的间隔,这会导致整体数据吞吐量的降低。

异步阻塞 I/O

另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。在这种模型中,配置的是非阻塞 I/O,然后使用阻塞select系统调用来确定一个 I/O 描述符何时有操作。使select调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。


图 4. 异步阻塞 I/O 模型的典型流程 (select)
异步阻塞 I/O 模型的典型流程 

select调用的主要问题是它的效率不是非常高。尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O 操作来说不建议使用。

异步非阻塞 I/O(AIO)

最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。读请求会立即返回,说明read请求已经成功发起了。在后台完成读操作时,应用程序然后会执行其他处理操作。当read的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。


图 5. 异步非阻塞 I/O 模型的典型流程
异步非阻塞 I/O 模型的典型流程 

在一个进程中为了执行多个 I/O 请求而对计算操作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行操作。

下一节将深入介绍这种模型,探索这种模型使用的 API,然后展示几个命令。


点击查看原始尺寸


回页首


异步 I/O 的动机

从前面 I/O 模型的分类中,我们可以看出 AIO 的动机。这种阻塞模型需要在 I/O 操作开始时阻塞应用程序。这意味着不可能同时重叠进行处理和 I/O 操作。同步非阻塞模型允许处理和 I/O 操作重叠进行,但是这需要应用程序根据重现的规则来检查 I/O 操作的状态。这样就剩下异步非阻塞 I/O 了,它允许处理和 I/O 操作重叠进行,包括 I/O 操作完成的通知。

除了需要阻塞之外,select函数所提供的功能(异步阻塞 I/O)与 AIO 类似。不过,它是对通知事件进行阻塞,而不是对 I/O 调用进行阻塞。


点击查看原始尺寸


回页首


Linux 上的 AIO 简介

本节将探索 Linux 的异步 I/O 模型,从而帮助我们理解如何在应用程序中使用这种技术。

在传统的 I/O 模型中,有一个使用惟一句柄标识的 I/O 通道。在 UNIX® 中,这些句柄是文件描述符(这对等同于文件、管道、套接字等等)。在阻塞 I/O 中,我们发起了一次传输操作,当传输操作完成或发生错误时,系统调用就会返回。

Linux 上的 AIO

AIO 在 2.5 版本的内核中首次出现,现在已经是 2.6 版本的产品内核的一个标准特性了。

在异步非阻塞 I/O 中,我们可以同时发起多个传输操作。这需要每个传输操作都有惟一的上下文,这样我们才能在它们完成时区分到底是哪个传输操作完成了。在 AIO 中,这是一个aiocb(AIO I/O Control Block)结构。这个结构包含了有关传输的所有信息,包括为数据准备的用户缓冲区。在产生 I/O (称为完成)通知时,aiocb结构就被用来惟一标识所完成的 I/O 操作。这个 API 的展示显示了如何使用它。


点击查看原始尺寸


回页首


AIO API

AIO 接口的 API 非常简单,但是它为数据传输提供了必需的功能,并给出了两个不同的通知模型。表 1 给出了 AIO 的接口函数,本节稍后会更详细进行介绍。


表 1. AIO 接口 API
API 函数说明
aio_read请求异步读操作
aio_error检查异步请求的状态
aio_return获得完成的异步请求的返回状态
aio_write请求异步写操作
aio_suspend挂起调用进程,直到一个或多个异步请求已经完成(或失败)
aio_cancel取消异步 I/O 请求
lio_listio发起一系列 I/O 操作

每个 API 函数都使用aiocb结构开始或检查。这个结构有很多元素,但是清单 1 仅仅给出了需要(或可以)使用的元素。


清单 1. aiocb 结构中相关的域 
  
struct aiocb {

  int aio_fildes;               // File Descriptor
  int aio_lio_opcode;           // Valid only for lio_listio (r/w/nop)
  volatile void *aio_buf;       // Data Buffer
  size_t aio_nbytes;            // Number of Bytes in Data Buffer
  struct sigevent aio_sigevent; // Notification Structure

  /* Internal fields */
  ...

};

sigevent结构告诉 AIO 在 I/O 操作完成时应该执行什么操作。我们将在 AIO 的展示中对这个结构进行探索。现在我们将展示各个 AIO 的 API 函数是如何工作的,以及我们应该如何使用它们。

aio_read

aio_read函数请求对一个有效的文件描述符进行异步读操作。这个文件描述符可以表示一个文件、套接字甚至管道。aio_read函数的原型如下:

int aio_read( struct aiocb *aiocbp );

aio_read函数在请求进行排队之后会立即返回。如果执行成功,返回值就为 0;如果出现错误,返回值就为 -1,并设置errno的值。

要执行读操作,应用程序必须对aiocb结构进行初始化。下面这个简短的例子就展示了如何填充aiocb请求结构,并使用aio_read来执行异步读请求(现在暂时忽略通知)操作。它还展示了aio_error的用法,不过我们将稍后再作解释。


清单 2. 使用 aio_read 进行异步读操作的例子 
  
#include 

...

  int fd, ret;
  struct aiocb my_aiocb;

  fd = open( "file.txt", O_RDONLY );
  if (fd < 0) perror("open");

  /* Zero out the aiocb structure (recommended) */
  bzero( (char *)&my_aiocb, sizeof(struct aiocb) );

  /* Allocate a data buffer for the aiocb request */
  my_aiocb.aio_buf = malloc(BUFSIZE+1);
  if (!my_aiocb.aio_buf) perror("malloc");

  /* Initialize the necessary fields in the aiocb */
  my_aiocb.aio_fildes = fd;
  my_aiocb.aio_nbytes = BUFSIZE;
  my_aiocb.aio_offset = 0;

  ret = aio_read( &my_aiocb );
  if (ret < 0) perror("aio_read");

  while ( aio_error( &my_aiocb ) == EINPROGRESS ) ;

  if ((ret = aio_return( &my_iocb )) > 0) {
    /* got ret bytes on the read */
  } else {
    /* read failed, consult errno */
  }


在清单 2 中,在打开要从中读取数据的文件之后,我们就清空了aiocb结构,然后分配一个数据缓冲区。并将对这个数据缓冲区的引用放到aio_buf中。然后,我们将aio_nbytes初始化成缓冲区的大小。并将aio_offset设置成 0(该文件中的第一个偏移量)。我们将aio_fildes设置为从中读取数据的文件描述符。在设置这些域之后,就调用aio_read请求进行读操作。我们然后可以调用aio_error来确定aio_read的状态。只要状态是EINPROGRESS,就一直忙碌等待,直到状态发生变化为止。现在,请求可能成功,也可能失败。

使用 AIO 接口来编译程序

我们可以在aio.h头文件中找到函数原型和其他需要的符号。在编译使用这种接口的程序时,我们必须使用 POSIX 实时扩展库(librt)。

注意使用这个 API 与标准的库函数从文件中读取内容是非常相似的。除了aio_read的一些异步特性之外,另外一个区别是读操作偏移量的设置。在传统的read调用中,偏移量是在文件描述符上下文中进行维护的。对于每个读操作来说,偏移量都需要进行更新,这样后续的读操作才能对下一块数据进行寻址。对于异步 I/O 操作来说这是不可能的,因为我们可以同时执行很多读请求,因此必须为每个特定的读请求都指定偏移量。

aio_error

aio_error函数被用来确定请求的状态。其原型如下:

int aio_error( struct aiocb *aiocbp );

这个函数可以返回以下内容:

  • EINPROGRESS,说明请求尚未完成
  • ECANCELLED,说明请求被应用程序取消了
  • -1,说明发生了错误,具体错误原因可以查阅errno

aio_return

异步 I/O 和标准块 I/O 之间的另外一个区别是我们不能立即访问这个函数的返回状态,因为我们并没有阻塞在read调用上。在标准的read调用中,返回状态是在该函数返回时提供的。但是在异步 I/O 中,我们要使用aio_return函数。这个函数的原型如下:

ssize_t aio_return( struct aiocb *aiocbp );

只有在aio_error调用确定请求已经完成(可能成功,也可能发生了错误)之后,才会调用这个函数。aio_return的返回值就等价于同步情况中readwrite系统调用的返回值(所传输的字节数,如果发生错误,返回值就为-1)。

aio_write

aio_write函数用来请求一个异步写操作。其函数原型如下:

int aio_write( struct aiocb *aiocbp );

aio_write函数会立即返回,说明请求已经进行排队(成功时返回值为0,失败时返回值为-1,并相应地设置errno)。

这与read系统调用类似,但是有一点不一样的行为需要注意。回想一下对于read调用来说,要使用的偏移量是非常重要的。然而,对于write来说,这个偏移量只有在没有设置O_APPEND选项的文件上下文中才会非常重要。如果设置了O_APPEND,那么这个偏移量就会被忽略,数据都会被附加到文件的末尾。否则,aio_offset域就确定了数据在要写入的文件中的偏移量。

阅读(1134) | 评论(1) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2011-04-26 23:49:11

原文参考此处 http://www.ibm.com/developerworks/cn/linux/l-async/