啥也没写
分类: LINUX
2010-05-05 23:40:59
为何选择Stackless?
Stackless可以简单的认为是Python一个增强版,最吸引眼球的非“微线程”莫属。微线程是轻量级的线程,与线程相比切换消耗的资源更小,线程内共享数据更加便捷。相比多线程代码更加简洁和可读。此项目是由EVE Online推出,在并发和性能上确实很强劲。安装和Python一样,可以考虑替换原系统Python。:)
为何选择MongoDB?
可以在官网看到很多流行的应用采用MongoDB,比如sourceforge,github等。相比RDBMS有啥优势?首先在速度和性能上优势最为明显,不仅可以当作类似KeyValue数据库来使,还包含了一些数据库查询(Distinct、Group、随机、索引等特性)。再有一点特性就是:简单。不论是应用还是文档,还是第三方API,几乎略过一下就可以使用。不过有点遗憾的就是,存储的数据文件很大,超过正常数据的2-4倍之间。本文测试的Apache日志大小是2G,生产的数据文件有6G。寒…希望在新版里能有所缩身,当然这个也是明显的以空间换速度的后果。
本文除去上面提及到的两个软件,还需要安装pymongo模块。
模块安装方式有源码编译和easy_install,这里就不再累赘。
1. 从Apache日志中分析出需要保存的资料,比如IP,时间,GET/POST,返回状态码等。
fmt_str = '(?P[.\d]+) - - \[(?P
定义了一个正则用于提取每行日志的内容。fmt_name就是提取尖括号中间的变量名。
2. 定义MongoDB相关变量,包括需要存到collection名称。Connection采取的是默认Host和端口。
conn = Connection() apache = conn.apache logs = apache.logs
3. 保存日志行
def make_line(line): m = fmt_re.search(line) if m: logs.insert(dict(zip(fmt_name, m.groups())))
4. 读取Apache日志文件
def make_log(log_path): with open(log_path) as fp: for line in fp: make_line(line.strip())
5. 运行把。
if __name__ == '__main__': make_log('d:/apachelog.txt')
脚本大致情况如此,这里没有放上stackless部分代码,可以参考下面代码:
import stackless def print_x(x): print x stackless.tasklet(print_x)('one') stackless.tasklet(print_x)('two') stackless.run()
tasklet操作只是把类似操作放入队列中,run才是真正的运行。这里主要用于替换原有多线程threading并行分析多个日志的行为。
补充:
Apache日志大小是2G,671万行左右。生成的数据库有6G。
硬件:Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz 台式机
系统:RHEL 5.2 文件系统ext3
其他:Stackless 2.6.4 MongoDB 1.2
在保存300万左右时候,一切正常。不管是CPU还是内存,以及插入速度都很不错,大概有8-9000条/秒。和以前笔记本上测试结果基本一致。再往以后,内存消耗有点飙升,插入速度也降低。500万左右记录时候CPU达到40%,内存消耗2.1G。在生成第二个2G数据文件时候似乎速度和效率又提升上去了。最终保存的结果不是太满意。
后加用笔记本重新测试了一下1000万数据,速度比上面的671万明显提升很多。初步怀疑有两个地方可能会影响性能和速度:
1. 文件系统的差异。笔记本是Ubuntu 9.10,ext4系统。搜了下ext3和ext4在大文件读写上会有所差距。
2. 正则匹配上。单行操作都是匹配提取。大文件上应该还有优化的空间。