分类: 服务器与存储
2009-09-01 14:43:21
Stripe Width and Stripe Size
RAID arrays that use improve performance by splitting up files into small pieces and distributing them to multiple hard disks. Most striping implementations allow the creator of the array control over two critical parameters that define the way that the data is broken into chunks and sent to the various disks. Each of these factors has an important impact on the performance of a striped array.
The first key parameter is the stripe width of the array. Stripe width refers to the number of parallel stripes that can be written to or read from simultaneously. This is of course equal to the number of disks in the array. So a four-disk striped array would have a stripe width of four. Read and write performance of a striped array increases as stripe width increases, all else being equal. The reason is that adding more drives to the array increases the parallelism of the array, allowing access to more drives simultaneously. You will generally have superior transfer performance from an array of eight 18 GB drives than from an array of four 36 GB of the same drive family, all else being equal. Of course, the cost of eight 18 GB drives is higher than that of four 36 GB drives, and there are other concerns such as power supply to be dealt with.
The second important parameter is the stripe size of the array, sometimes also referred to by terms such as block size, chunk size, stripe length or granularity. This term refers to the size of the stripes written to each disk. RAID arrays that stripe in blocks typically allow the selection of block sizes in ranging from 2 kiB to 512 kiB (or even higher) in powers of two (meaning 2 kiB, 4 kiB, 8 kiB and so on.) Byte-level striping (as in ) uses a stripe size of one byte or perhaps a small number like 512, usually not selectable by the user.