路虽弥,不行不至;事虽少,不做不成。
分类: Oracle
2007-08-13 09:47:12
Bitmap Index vs. B-tree Index: Which and When?
转载:
Understanding the proper application of each index can have a big impact on performance.
Conventional wisdom holds that bitmap indexes are most appropriate for columns having low distinct values—such as GENDER, MARITAL_STATUS, and RELATION. This assumption is not completely accurate, however. In reality, a bitmap index is always advisable for systems in which data is not frequently updated by many concurrent systems. In fact, as I'll demonstrate here, a bitmap index on a column with 100-percent unique values (a column candidate for primary key) is as efficient as a B-tree index.
In this article I'll provide some examples, along with optimizer decisions, that are common for both types of indexes on a low-cardinality column as well as a high-cardinality one. These examples will help DBAs understand that the usage of bitmap indexes is not in fact cardinality dependent but rather application dependent.
Comparing the Indexes
There are several disadvantages to using a bitmap index on a unique column—one being the need for sufficient space (and Oracle does not recommend it). However, the size of the bitmap index depends on the cardinality of the column on which it is created as well as the data distribution. Consequently, a bitmap index on the GENDER column will be smaller than a B-tree index on the same column. In contrast, a bitmap index on EMPNO (a candidate for primary key) will be much larger than a B-tree index on this column. But because fewer users access decision-support systems (DSS) systems than would access transaction-processing (OLTP) ones, resources are not a problem for these applications.
To illustrate this point, I created two tables, TEST_NORMAL and TEST_RANDOM. I inserted one million rows into the TEST_NORMAL table using a PL/SQL block, and then inserted these rows into the TEST_RANDOM table in random order:
Create table test_normal (empno number(10), ename varchar2(30), sal number(10)); Begin For i in 1..1000000 Loop Insert into test_normal values(i, dbms_random.string('U',30), dbms_random.value(1000,7000)); If mod(i, 10000) = 0 then Commit; End if; End loop; End; / Create table test_random as select /*+ append */ * from test_normal order by dbms_random.random; SQL> select count(*) "Total Rows" from test_normal; Total Rows ---------- 1000000 Elapsed: 00:00:01.09 SQL> select count(distinct empno) "Distinct Values" from test_normal; Distinct Values --------------- 1000000 Elapsed: 00:00:06.09 SQL> select count(*) "Total Rows" from test_random; Total Rows ---------- 1000000 Elapsed: 00:00:03.05 SQL> select count(distinct empno) "Distinct Values" from test_random; Distinct Values --------------- 1000000 Elapsed: 00:00:12.07Note that the TEST_NORMAL table is organized and that the TEST_RANDOM table is randomly created and hence has disorganized data. In the above table, column EMPNO has 100-percent distinct values and is a good candidate to become a primary key. If you define this column as a primary key, you will create a B-tree index and not a bitmap index because Oracle does not support bitmap primary key indexes.
To analyze the behavior of these indexes, we will perform the following steps:
Step 1A (on TEST_NORMAL)
In this step, we will create a bitmap index on the TEST_NORMAL table and then check for the size of this index, its clustering factor, and the size of the table. Then we will run some queries with equality predicates and note the I/Os of these queries using this bitmap index.
SQL> create bitmap index normal_empno_bmx on test_normal(empno); Index created. Elapsed: 00:00:29.06 SQL> analyze table test_normal compute statistics for table for all indexes for all indexed columns; Table analyzed. Elapsed: 00:00:19.01 SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3* where segment_name in ('TEST_NORMAL','NORMAL_EMPNO_BMX'); SEGMENT_NAME Size in MB ------------------------------------ --------------- TEST_NORMAL 50 NORMAL_EMPNO_BMX 28 Elapsed: 00:00:02.00 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ------------------------------ --------------------------------- NORMAL_EMPNO_BMX 1000000 Elapsed: 00:00:00.00You can see in the preceding table that the size of the index is 28MB and that the clustering factor is equal to the number of rows in the table. Now let's execute the queries with equality predicates for different sets of values:
SQL> set autotrace only SQL> select * from test_normal where empno=&empno; Enter value for empno: 1000 old 1: select * from test_normal where empno=&empno new 1: select * from test_normal where empno=1000 Elapsed: 00:00:00.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4 Card=1 Bytes=34) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=4 Car d=1 Bytes=34) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_EMPNO_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 515 bytes sent via SQL*Net to client 499 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processedStep 1B (on TEST_NORMAL)
Now we will drop this bitmap index and create a B-tree index on the EMPNO column. As before, we will check for the size of the index and its clustering factor and execute the same queries for the same set of values, to compare the I/Os.
SQL> drop index NORMAL_EMPNO_BMX; Index dropped. SQL> create index normal_empno_idx on test_normal(empno); Index created. SQL> analyze table test_normal compute statistics for table for all indexes for all indexed columns; Table analyzed. SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3 where segment_name in ('TEST_NORMAL','NORMAL_EMPNO_IDX'); SEGMENT_NAME Size in MB ---------------------------------- --------------- TEST_NORMAL 50 NORMAL_EMPNO_IDX 18 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ---------------------------------- ---------------------------------- NORMAL_EMPNO_IDX 6210It is clear in this table that the B-tree index is smaller than the bitmap index on the EMPNO column. The clustering factor of the B-tree index is much nearer to the number of blocks in a table; for that reason, the B-tree index is efficient for range predicate queries.
Now we'll run the same queries for the same set of values, using our B-tree index.
SQL> set autot trace SQL> select * from test_normal where empno=&empno; Enter value for empno: 1000 old 1: select * from test_normal where empno=&empno new 1: select * from test_normal where empno=1000 Elapsed: 00:00:00.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4 Card=1 Bytes=34) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=4 Car d=1 Bytes=34) 2 1 INDEX (RANGE SCAN) OF 'NORMAL_EMPNO_IDX' (NON-UNIQUE) (C ost=3 Card=1) Statistics ---------------------------------------------------------- 29 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 515 bytes sent via SQL*Net to client 499 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processedAs you can see, when the queries are executed for different set of values, the number of consistent gets and physical reads are identical for bitmap and B-tree indexes on a 100-percent unique column.
BITMAP | EMPNO | B-TREE | ||
Consistent Reads | Physical Reads | Consistent Reads | Physical Reads | |
5 | 0 | 1000 | 5 | 0 |
5 | 2 | 2398 | 5 | 2 |
5 | 2 | 8545 | 5 | 2 |
5 | 2 | 98008 | 5 | 2 |
5 | 2 | 85342 | 5 | 2 |
5 | 2 | 128444 | 5 | 2 |
5 | 2 | 858 | 5 | 2 |
Step 2A (on TEST_RANDOM)
Now we'll perform the same experiment on TEST_RANDOM:
SQL> create bitmap index random_empno_bmx on test_random(empno); Index created. SQL> analyze table test_random compute statistics for table for all indexes for all indexed columns; Table analyzed. SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3* where segment_name in ('TEST_RANDOM','RANDOM_EMPNO_BMX'); SEGMENT_NAME Size in MB ------------------------------------ --------------- TEST_RANDOM 50 RANDOM_EMPNO_BMX 28 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ------------------------------ --------------------------------- RANDOM_EMPNO_BMX 1000000Again, the statistics (size and clustering factor) are identical to those of the index on the TEST_NORMAL table:
SQL> select * from test_random where empno=&empno; Enter value for empno: 1000 old 1: select * from test_random where empno=&empno new 1: select * from test_random where empno=1000 Elapsed: 00:00:00.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4 Card=1 Bytes=34) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_RANDOM' (Cost=4 Card=1 Bytes=34) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP INDEX (SINGLE VALUE) OF 'RANDOM_EMPNO_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 515 bytes sent via SQL*Net to client 499 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processedStep 2B (on TEST_RANDOM)
Now, as in Step 1B, we will drop the bitmap index and create a B-tree index on the EMPNO column.
SQL> drop index RANDOM_EMPNO_BMX; Index dropped. SQL> create index random_empno_idx on test_random(empno); Index created. SQL> analyze table test_random compute statistics for table for all indexes for all indexed columns; Table analyzed. SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3 where segment_name in ('TEST_RANDOM','RANDOM_EMPNO_IDX'); SEGMENT_NAME Size in MB ---------------------------------- --------------- TEST_RANDOM 50 RANDOM_EMPNO_IDX 18 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ---------------------------------- ---------------------------------- RANDOM_EMPNO_IDX 999830This table shows that the size of the index is equal to the size of this index on TEST_NORMAL table but the clustering factor is much nearer to the number of rows, which makes this index inefficient for range predicate queries (which we'll see in Step 4). This clustering factor will not affect the equality predicate queries because the rows have 100-percent distinct values and the number of rows per key is 1.
Now let's run the queries with equality predicates and the same set of values.
SQL> select * from test_random where empno=&empno; Enter value for empno: 1000 old 1: select * from test_random where empno=&empno new 1: select * from test_random where empno=1000 Elapsed: 00:00:00.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4 Card=1 Bytes=34) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_RANDOM' (Cost=4 Card=1 Bytes=34) 2 1 INDEX (RANGE SCAN) OF 'RANDOM_EMPNO_IDX' (NON-UNIQUE) (Cost=3 Card=1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5 consistent gets 0 physical reads 0 redo size 515 bytes sent via SQL*Net to client 499 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processed
Again, the results are almost identical to those in Steps 1A and 1B. The data distribution did not affect the amount of consistent gets and physical reads for a unique column.
Step 3A (on TEST_NORMAL)
In this step, we will create the bitmap index (similar to Step 1A). We know the size and the clustering factor of the index, which equals the number of rows in the table. Now let's run some queries with range predicates.
SQL> select * from test_normal where empno between &range1 and &range2; Enter value for range1: 1 Enter value for range2: 2300 old 1: select * from test_normal where empno between &range1 and &range2 new 1: select * from test_normal where empno between 1 and 2300 2300 rows selected. Elapsed: 00:00:00.03 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=451 Card=2299 Bytes=78166) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=451 Card=2299 Bytes=78166) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP INDEX (RANGE SCAN) OF 'NORMAL_EMPNO_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 331 consistent gets 0 physical reads 0 redo size 111416 bytes sent via SQL*Net to client 2182 bytes received via SQL*Net from client 155 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 2300 rows processedStep 3B (on TEST_NORMAL)
In this step, we'll execute the queries against the TEST_NORMAL table with a B-tree index on it.
SQL> select * from test_normal where empno between &range1 and &range2; Enter value for range1: 1 Enter value for range2: 2300 old 1: select * from test_normal where empno between &range1 and &range2 new 1: select * from test_normal where empno between 1 and 2300 2300 rows selected. Elapsed: 00:00:00.02 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=23 Card=2299 Bytes=78166) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=23 Card=2299 Bytes=78166) 2 1 INDEX (RANGE SCAN) OF 'NORMAL_EMPNO_IDX' (NON-UNIQUE) (Cost=8 Card=2299) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 329 consistent gets 15 physical reads 0 redo size 111416 bytes sent via SQL*Net to client 2182 bytes received via SQL*Net from client 155 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 2300 rows processedWhen these queries are executed for different sets of ranges, the results below show:
BITMAP | EMPNO (Range) | B-TREE | ||
Consistent Reads | Physical Reads | Consistent Reads | Physical Reads | |
331 | 0 | 1-2300 | 329 | 0 |
285 | 0 | 8-1980 | 283 | 0 |
346 | 19 | 1850-4250 | 344 | 16 |
427 | 31 | 28888-31850 | 424 | 28 |
371 | 27 | 82900-85478 | 367 | 23 |
2157 | 149 | 984888-1000000 | 2139 | 35 |
As you can see, the number of consistent gets and physical reads with both indexes is again nearly identical. The last range (984888-1000000) returned almost 15,000 rows, which was the maximum number of rows fetched for all the ranges given above. So when we asked for a full table scan (by giving the hint /*+ full(test_normal) */ ), the consistent read and physical read counts were 7,239 and 5,663, respectively.
Step 4A (on TEST_RANDOM)
In this step, we will run the queries with range predicates on the TEST_RANDOM table with bitmap index and check for consistent gets and physical reads. Here you'll see the impact of the clustering factor.SQL>select * from test_random where empno between &range1 and &range2; Enter value for range1: 1 Enter value for range2: 2300 old 1: select * from test_random where empno between &range1 and &range2 new 1: select * from test_random where empno between 1 and 2300 2300 rows selected. Elapsed: 00:00:08.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=453 Card=2299 Bytes=78166) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_RANDOM' (Cost=453 Card=2299 Bytes=78166) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP INDEX (RANGE SCAN) OF 'RANDOM_EMPNO_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 2463 consistent gets 1200 physical reads 0 redo size 111416 bytes sent via SQL*Net to client 2182 bytes received via SQL*Net from client 155 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 2300 rows processedStep 4B (on TEST_RANDOM)
In this step, we will execute the range predicate queries on TEST_RANDOM with a B-tree index on it. Recall that the clustering factor of this index was very close to the number of rows in a table (and thus inefficient). Here's what the optimizer has to say about that:
SQL> select * from test_random where empno between &range1 and &range2; Enter value for range1: 1 Enter value for range2: 2300 old 1: select * from test_random where empno between &range1 and &range2 new 1: select * from test_random where empno between 1 and 2300 2300 rows selected. Elapsed: 00:00:03.04 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=613 Card=2299 Bytes=78166) 1 0 TABLE ACCESS (FULL) OF 'TEST_RANDOM' (Cost=613 Card=2299 Bytes=78166) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 6415 consistent gets 4910 physical reads 0 redo size 111416 bytes sent via SQL*Net to client 2182 bytes received via SQL*Net from client 155 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 2300 rows processed
The optimizer opted for a full table scan rather than using the index because of the clustering factor:
BITMAP | EMPNO (Range) | B-TREE | ||
Consistent Reads | Physical Reads | Consistent Reads | Physical Reads | |
2463 | 1200 | 1-2300 | 6415 | 4910 |
2114 | 31 | 8-1980 | 6389 | 4910 |
2572 | 1135 | 1850-4250 | 6418 | 4909 |
3173 | 1620 | 28888-31850 | 6456 | 4909 |
2762 | 1358 | 82900-85478 | 6431 | 4909 |
7254 | 3329 | 984888-1000000 | 7254 | 4909 |
For the last range (984888-1000000) only, the optimizer opted for a full table scan for the bitmap index, whereas for all ranges, it opted for a full table scan for the B-tree index. This disparity is due to the clustering factor: The optimizer does not consider the value of the clustering factor when generating execution plans using a bitmap index, whereas for a B-tree index, it does. In this scenario, the bitmap index performs more efficiently than the B-tree index.
The following steps reveal more interesting facts about these indexes.
Step 5A (on TEST_NORMAL)
Create a bitmap index on the SAL column of the TEST_NORMAL table. This column has normal cardinality.
SQL> create bitmap index normal_sal_bmx on test_normal(sal); Index created. SQL> analyze table test_normal compute statistics for table for all indexes for all indexed columns; Table analyzed.
Now let's get the size of the index and the clustering factor.
SQL>select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2* from user_segments 3* where segment_name in ('TEST_NORMAL','NORMAL_SAL_BMX'); SEGMENT_NAME Size in MB ------------------------------ -------------- TEST_NORMAL 50 NORMAL_SAL_BMX 4 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ------------------------------ ---------------------------------- NORMAL_SAL_BMX 6001Now for the queries. First run them with equality predicates:
SQL> set autot trace SQL> select * from test_normal where sal=&sal; Enter value for sal: 1869 old 1: select * from test_normal where sal=&sal new 1: select * from test_normal where sal=1869 164 rows selected. Elapsed: 00:00:00.08 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=39 Card=168 Bytes=4032) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=39 Card=168 Bytes=4032) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 165 consistent gets 0 physical reads 0 redo size 8461 bytes sent via SQL*Net to client 609 bytes received via SQL*Net from client 12 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 164 rows processedand then with range predicates:
SQL> select * from test_normal where sal between &sal1 and &sal2; Enter value for sal1: 1500 Enter value for sal2: 2000 old 1: select * from test_normal where sal between &sal1 and &sal2 new 1: select * from test_normal where sal between 1500 and 2000 83743 rows selected. Elapsed: 00:00:05.00 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=83376 Bytes =2001024) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=83376 Bytes=2001024) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 11778 consistent gets 5850 physical reads 0 redo size 4123553 bytes sent via SQL*Net to client 61901 bytes received via SQL*Net from client 5584 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 83743 rows processedNow drop the bitmap index and create a B-tree index on TEST_NORMAL.
SQL> create index normal_sal_idx on test_normal(sal); Index created. SQL> analyze table test_normal compute statistics for table for all indexes for all indexed columns; Table analyzed.Take a look at the size of the index and the clustering factor.
SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3 where segment_name in ('TEST_NORMAL','NORMAL_SAL_IDX'); SEGMENT_NAME Size in MB ------------------------------ --------------- TEST_NORMAL 50 NORMAL_SAL_IDX 17 SQL> select index_name, clustering_factor from user_indexes; INDEX_NAME CLUSTERING_FACTOR ------------------------------ ---------------------------------- NORMAL_SAL_IDX 986778In the above table, you can see that this index is larger than the bitmap index on the same column. The clustering factor is also near the number of rows in this table.
Now for the tests; equality predicates first:
SQL> set autot trace SQL> select * from test_normal where sal=&sal; Enter value for sal: 1869 old 1: select * from test_normal where sal=&sal new 1: select * from test_normal where sal=1869 164 rows selected. Elapsed: 00:00:00.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=169 Card=168 Bytes=4032) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=169 Card=168 Bytes=4032) 2 1 INDEX (RANGE SCAN) OF 'NORMAL_SAL_IDX' (NON-UNIQUE) (Cost=3 Card=168) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 177 consistent gets 0 physical reads 0 redo size 8461 bytes sent via SQL*Net to client 609 bytes received via SQL*Net from client 12 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 164 rows processed...and then, range predicates:
SQL> select * from test_normal where sal between &sal1 and &sal2; Enter value for sal1: 1500 Enter value for sal2: 2000 old 1: select * from test_normal where sal between &sal1 and &sal2 new 1: select * from test_normal where sal between 1500 and 2000 83743 rows selected. Elapsed: 00:00:04.03 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=83376 Bytes =2001024) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=83376 Bytes=2001024) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 11778 consistent gets 3891 physical reads 0 redo size 4123553 bytes sent via SQL*Net to client 61901 bytes received via SQL*Net from client 5584 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 83743 rows processedWhen the queries were executed for different set of values, the resulting output, as shown in the tables below, reveals that the numbers of consistent gets and physical reads are identical.
BITMAP |
SAL (Equality) |
B-TREE | Rows Fetched | ||
Consistent Reads | Physical Reads | Consistent Reads | Physical Reads | ||
165 | 0 | 1869 | 177 | 164 | |
169 | 163 | 3548 | 181 | 167 | |
174 | 166 | 6500 | 187 | 172 | |
75 | 69 | 7000 | 81 | 73 | |
177 | 163 | 2500 | 190 | 175 |
BITMAP |
SAL (Range) |
B-TREE | Rows Fetched | ||
Consistent Reads | Physical Reads | Consistent Reads | Physical Reads | ||
11778 | 5850 | 1500-2000 | 11778 | 3891 | 83743 |
11765 | 5468 | 2000-2500 | 11765 | 3879 | 83328 |
11753 | 5471 | 2500-3000 | 11753 | 3884 | 83318 |
17309 | 5472 | 3000-4000 | 17309 | 3892 | 166999 |
39398 | 5454 | 4000-7000 | 39398 | 3973 | 500520 |
For range predicates the optimizer opted for a full table scan for all the different set of values—it didn't use the indexes at all—whereas for equality predicates, the optimizer used the indexes. Again, the consistent gets and physical reads are identical.
Consequently, you can conclude that for a normal-cardinality column, the optimizer decisions for the two types of indexes were the same and there were no significant differences between the I/Os.
Step 6 (add a GENDER column)
Before performing the test on a low-cardinality column, let's add a GENDER column to this table and update it with M, F, and null values.
SQL> alter table test_normal add GENDER varchar2(1); Table altered. SQL> select GENDER, count(*) from test_normal group by GENDER; S COUNT(*) - ---------- F 333769 M 499921 166310 3 rows selected.The size of the bitmap index on this column is around 570KB, as indicated in the table below:
SQL> create bitmap index normal_GENDER_bmx on test_normal(GENDER); Index created. Elapsed: 00:00:02.08 SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3 where segment_name in ('TEST_NORMAL','NORMAL_GENDER_BMX'); SEGMENT_NAME Size in MB ------------------------------ --------------- TEST_NORMAL 50 NORMAL_GENDER_BMX .5625 2 rows selected.In contrast, the B-tree index on this column is 13MB in size, which is much bigger than the bitmap index on this column.
SQL> create index normal_GENDER_idx on test_normal(GENDER); Index created. SQL> select substr(segment_name,1,30) segment_name, bytes/1024/1024 "Size in MB" 2 from user_segments 3 where segment_name in ('TEST_NORMAL','NORMAL_GENDER_IDX'); SEGMENT_NAME Size in MB ------------------------------ --------------- TEST_NORMAL 50 NORMAL_GENDER_IDX 13 2 rows selected.Now, if we execute a query with equality predicates, the optimizer will not make use of this index, be it a bitmap or a B-tree. Rather, it will prefer a full table scan.
SQL> select * from test_normal where GENDER is null; 166310 rows selected. Elapsed: 00:00:06.08 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=166310 Bytes=4157750) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=166310 Bytes=4157750) SQL> select * from test_normal where GENDER='M'; 499921 rows selected. Elapsed: 00:00:16.07 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=499921 Bytes=12498025) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=499921Bytes=12498025) SQL>select * from test_normal where GENDER='F' / 333769 rows selected. Elapsed: 00:00:12.02 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=333769 Byte s=8344225) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=333769 Bytes=8344225)Conclusions
Now that we understood how the optimizer reacts to these techniques, let's examine a scenario that clearly demonstrates the best respective applications of bitmap indexes and B-tree indexes.
With a bitmap index on the GENDER column in place, create another bitmap index on the SAL column and then execute some queries. The queries will be re-executed with B-tree indexes on these columns.
From the TEST_NORMAL table, you need the employee number of all the male employees whose monthly salaries equal any of the following values:
1000 1500 2000 2500 3000 3500 4000 4500Thus:
SQL>select * from test_normal where sal in (1000,1500,2000,2500,3000,3500,4000,4500,5000) and GENDER='M';This is a typical data warehouse query, which, of course, you should never execute on an OLTP system. Here are the results with the bitmap index in place on both columns:
SQL>select * from test_normal where sal in (1000,1500,2000,2500,3000,3500,4000,4500,5000) and GENDER='M'; 1453 rows selected. Elapsed: 00:00:02.03 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=198 Card=754 Bytes=18850) 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_NORMAL' (Cost=198 Card=754 Bytes=18850) 2 1 BITMAP CONVERSION (TO ROWIDS) 3 2 BITMAP AND 4 3 BITMAP OR 5 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 6 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 7 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 8 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 9 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 10 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 11 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 12 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 13 4 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_SAL_BMX' 14 3 BITMAP INDEX (SINGLE VALUE) OF 'NORMAL_GENDER_BMX' Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 1353 consistent gets 920 physical reads 0 redo size 75604 bytes sent via SQL*Net to client 1555 bytes received via SQL*Net from client 98 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1453 rows processedAnd with the B-tree index in place:
SQL>select * from test_normal where sal in (1000,1500,2000,2500,3000,3500,4000,4500,5000) and GENDER='M'; 1453 rows selected. Elapsed: 00:00:03.01 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=601 Card=754 Bytes=18850) 1 0 TABLE ACCESS (FULL) OF 'TEST_NORMAL' (Cost=601 Card=754 Bytes=18850) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 6333 consistent gets 4412 physical reads 0 redo size 75604 bytes sent via SQL*Net to client 1555 bytes received via SQL*Net from client 98 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1453 rows processedAs you can see here, with the B-tree index, the optimizer opted for a full table scan, whereas in the case of the bitmap index, it used the index to answer the query. You can deduce performance by the number of I/Os required to fetch the result.
In summary, bitmap indexes are best suited for DSS regardless of cardinality for these reasons:
The data here is fairly clear. Both indexes have a similar purpose: to return results as fast as possible. But your choice of which one to use should depend purely on the type of application, not on the level of cardinality.