Chinaunix首页 | 论坛 | 博客
  • 博客访问: 397345
  • 博文数量: 273
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 1430
  • 用 户 组: 普通用户
  • 注册时间: 2018-02-02 15:57
文章分类

全部博文(273)

文章存档

2018年(273)

我的朋友

分类: 大数据

2018-07-02 15:17:49

2018年世界杯正进行的如火如荼,日本、塞内加尔相继爆冷战胜了强大的对手,东道主俄罗斯依旧保持开挂状态,碾压拥有萨拉赫的埃及队,豪取两连胜。在足球的世界里,没有强者恒强的定律,这或许也是足球的魅力所在吧。然而对于世界各地的球迷们来说,世界杯的最终归属仍然是最热门的话题。


如果你不仅仅是一个足球迷而且还是一个技术人员,我想你已经意识到机器学习和人工智能也是目前流行语。让我们结合这两个来预测哪个国家会赢得FIFA世界杯。


0_TS9yYkdL98sQKELf.jpeg


免责声明:这不应该用于投注或任何财务决策。如果你选择,我是谁来阻止你(如果你遇到困境,不要忘了我)。


足球比赛中涉及很多因素,因此所有这些因素都无法在机器学习模型中进行探讨。这只是一个黑客试图用一些很酷的数据...


目标


  1. 目标是使用机器学习预测谁将赢得2018年世界杯足球赛

  2. 预测整场比赛的单项比赛结果。

  3. 运行下一场比赛的模拟,例如四分之一决赛,半决赛和决赛。


这些目标提出了一种独特的真实世界机器学习预测问题,并涉及解决各种机器学习任务:数据整合,特征建模和结果预测。


数据


我使用了Kaggle的两个数据集。你可以在这里找到它们。我们将使用自1930年冠军开始以来所有参赛队的历史赛事结果。


限制:国际足联排名是在90年代创建的,因此缺乏大部分数据集。所以让我们坚持历史比赛记录。


环境和工具:jupyter笔记本,numpy,pandas,seaborn,matplotlib和scikit-learn。


我们首先要对两个数据集进行一些探索性分析,做一些特征工程来选择最相关的特征进行预测,做一些数据处理,选择一个机器学习模型,最后将其部署到数据集上。


阅读(924) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~