分类: LINUX
2017-04-18 09:38:04
ioctl 函数
本函数影响由fd 参数引用的一个打开的文件。
#include
int ioctl( int fd, int request, .../* void *arg */ );
返回0 :成功 -1 :出错
第三个参数总是一个指 针,但指针的类型依赖于request 参数。
我们可以把和网络相关 的请求划分为6 类:
套接口操作
文件操作
接口操作
ARP 高速缓存操作
路由表操作
流系统
下表列出了网络相关ioctl 请求的request 参数以及arg 地址必须指向的数据类型:
类别 |
Request |
说明 |
数据类型 |
套 接 口 |
SIOCATMARK SIOCSPGRP SIOCGPGRP |
是否位于带外标记 设置套接口的进程ID 或进程组ID 获取套接口的进程ID 或进程组ID |
int int int |
文
件
|
FIONBIN FIOASYNC FIONREAD FIOSETOWN FIOGETOWN
|
设置/ 清除非阻塞I/O 标志 设置/ 清除信号驱动异步I/O 标志 获取接收缓存区中的字 节数 设置文件的进程ID 或进程组ID 获取文件的进程ID 或进程组ID |
int int int int int |
接 口
|
SIOCGIFCONF SIOCSIFADDR SIOCGIFADDR SIOCSIFFLAGS SIOCGIFFLAGS SIOCSIFDSTADDR SIOCGIFDSTADDR SIOCGIFBRDADDR SIOCSIFBRDADDR SIOCGIFNETMASK SIOCSIFNETMASK SIOCGIFMETRIC SIOCSIFMETRIC SIOCGIFMTU SIOCxxx |
获取所有接口的清单 设置接口地址 获取接口地址 设置接口标志 获取接口标志 设置点到点地址 获取点到点地址 获取广播地址 设置广播地址 获取子网掩码 设置子网掩码 获取接口的测度 设置接口的测度 获取接口MTU (还有很多取决于系统 的实现) |
struct ifconf struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq struct ifreq |
ARP |
SIOCSARP SIOCGARP SIOCDARP |
创建/ 修改ARP 表项 获取ARP 表项 删除ARP 表项 |
struct arpreq struct arpreq struct arpreq |
路 由 |
SIOCADDRT SIOCDELRT |
增加路径 删除路径 |
struct rtentry struct rtentry |
流 |
I_xxx |
|
|
套接 口操作:
明确用于套接口操作的ioctl 请求有三个, 它们都要求ioctl 的第三个参数是指向某个整数的一个指针。
SIOCATMARK: 如果本套接口的的度指针当前位于带外标记,那就通过由第三个参数指向的整数返回一个非0 值;否则返回一个0 值。POSIX 以函数sockatmark 替换本请求。
SIOCGPGRP : 通过第三个参数指向的整数返回本套接口的进程ID 或进程组ID ,该ID 指定针对本套接口的SIGIO 或SIGURG 信号的接收进程。本请求和fcntl 的F_GETOWN 命令等效,POSIX 标准化的是fcntl 函数。
SIOCSPGRP : 把本套接口的进程ID 或者进程组ID 设置成第三个参数指向的整数,该ID 指定针对本套接口的SIGIO 或SIGURG 信号的接收进程,本请求和fcntl 的F_SETOWN 命令等效,POSIX 标准化的是fcntl 操作。
文件操作:
以下5 个请求都要求ioctl 的第三个参数指向一个整数。
FIONBIO : 根据ioctl 的第三个参数指向一个0 或非0 值分别清除或设置本套接口的非阻塞标志。本请求和O_NONBLOCK 文件状态标志等效,而该标志通过fcntl 的F_SETFL 命令清除或设置。
FIOASYNC : 根据iocl 的第三个参数指向一个0 值或非0 值分别清除或设置针对本套接口的信号驱动异步I/O 标志,它决定是否收取针对本套接口的异步I/O 信号(SIGIO )。本请求和O_ASYNC 文件状态标志等效,而该标志可以通过fcntl 的F_SETFL 命令清除或设置。
FIONREAD : 通过由ioctl 的第三个参数指向的整数返回当前在本套接口接收缓冲区中的字节数。本特性同样适用于文件,管道和终端。
FIOSETOWN : 对于套接口和SIOCSPGRP 等效。
FIOGETOWN : 对于套接口和SIOCGPGRP 等效。
接口配置:
得到系统中所有接口由SIOCGIFCONF 请求完成,该请求使用ifconf 结构,ifconf 又使用ifreq
结构,如下所示:
Struct ifconf{
int ifc_len; // 缓冲区的大小
union{
caddr_t ifcu_buf; // input from user->kernel
struct ifreq *ifcu_req; // return of structures returned
}ifc_ifcu;
};
#define ifc_buf ifc_ifcu.ifcu_buf //buffer address
#define ifc_req ifc_ifcu.ifcu_req //array of structures returned
#define IFNAMSIZ 16
struct ifreq{
char ifr_name[IFNAMSIZ]; // interface name, e.g., “le0”
union{
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;
}ifr_ifru;
};
#define ifr_addr ifr_ifru.ifru_addr // address
#define ifr_dstaddr ifr_ifru.ifru_dstaddr // otner end of p-to-p link
#define ifr_broadaddr ifr_ifru.ifru_broadaddr // broadcast address
#define ifr_flags ifr_ifru.ifru_flags // flags
#define ifr_metric ifr_ifru.ifru_metric // metric
#define ifr_data ifr_ifru.ifru_data // for use by interface
再调用ioctl 前我们必须先分撇一个缓冲区和一个ifconf 结构,然后才初始化后者。如下图
展示了一个ifconf 结构的初始化结构,其中缓冲区的大小为1024 ,ioctl 的第三个参数指向
这样一个ifconf 结构。
ifc_len |
Ifc_buf |
1024
---------------------> 缓存
假设内核返回2 个ifreq 结构,ioctl 返回时通过同一个ifconf 结构缓冲区填入了那2 个ifreq 结构,ifconf 结构的ifc_len 成员也被更新,以反映存放在缓冲区中的信息量
1. 前言
使用ioctl系统调用是用户空间向内核交换数据的常用方法之一,从ioctl这个名称上看,本意是针对I/O设备进
行的控制操作,但实际并不限制是真正的I/O设备,可以是任何一个内核设备即可。
2. 基本过程
在内核空间中ioctl是很多内核操作结构的一个成员函数,如文件操作结构struct
file_operations(include/linux/fs.h)、协议操作结构struct
proto_ops(include/linux/net.h)等、tty操作结构struct
tty_driver(include/linux/tty_driver.h)等,而这些操作结构分别对应各种内核设备,只要在用户空间打开这些设备,
如I/O设备可用open(2)打开,网络协议可用socket(2)打开等,获取一个文件描述符后,就可以在这个描述符上调用ioctl(2)来向内核
交换数据。
3. ioctl(2)
ioctl(2)函数的基本使用格式为:
int ioctl(int
fd, int cmd, void *data)
第一个参数是文件描述符;cmd是操作命令,一般分为GET、SET以及其他类型命令,GET
是用户空间进程从内核读数据,SET是用户空间进程向内核写数据,cmd虽然是一个整数,但是有一定的参数格式的,下面再详细说明;第三个参数是数据起始
位置指针,
cmd命令参数是个32位整数,分为四部分:
dir(2b) size(14b) type(8b) nr(8b)
详
细定义cmd要包括这4个部分时可使用宏_IOC(dir,type,nr,size)来定义,而最简单情况下使用_IO(type,
nr)来定义就可以了,这些宏都在include/asm/ioctl.h中定义
本文cmd定义为:
#define
NEWCHAR_IOC_MAGIC 'M'
#define NEWCHAR_SET _IO(NEWCHAR_IOC_MAGIC,
0)
#define NEWCHAR_GET _IO(NEWCHAR_IOC_MAGIC, 1)
#define
NEWCHAR_IOC_MAXNR 1
要定义自己的ioctl操作,可以有两个方式,一种是在现有的内核代码中直接添加相关代码进行支持,比如想通过socket描述符进行
ioctl操作,可在net/ipv4/af_inet.c中的inet_ioctl()函数中添加自己定义的命令和相关的处理函数,重新编译内核即可,
不过这种方法一般不推荐;第二种方法是定义自己的内核设备,通过设备的ioctl()来操作,可以编成模块,这样不影响原有的内核,这是最通常的做法。
4.
内核设备
为进行ioctl操作最通常是使用字符设备来进行,当然定义其他类型的设备也可以。在用户空间,可使用mknod命令建立一个
字符类型设备文件,假设该设备的主设备号为123,次设备号为0:
mknode /dev/newchar c 123 0
如果是编程的
话,可以用mknode(2)函数来建立设备文件。
建立设备文件后再将该设备的内核模块文件插入内核,就可以使用open(2)打开
/dev/newchar文件,然后调用ioctl(2)来传递数据,最后用close(2)关闭设备。而如果内核中还没有插入该设备的模
块,open(2)时就会失败。
由于内核内存空间和用户内存空间不同,要将内核数据拷贝到用户空间,要使用专用拷贝函数
copy_to_user();要将用户空间数据拷贝到内核,要使用copy_from_user()。
要最简单实现以上功能,内核模块只需要实
现设备的open, ioctl和release三个函数即可,
下面介绍程序片断:
static int
newchar_ioctl(struct inode *inode, struct file *filep,
unsigned
int cmd, unsigned long arg);
static int newchar_open(struct inode
*inode, struct file *filep);
static int newchar_release(struct inode
*inode, struct file *filep);
// 定义文件操作结构,结构中其他元素为空
struct
file_operations newchar_fops =
{
owner: THIS_MODULE,
ioctl:
newchar_ioctl,
open: newchar_open,
release: newchar_release,
};
//
定义要传输的数据块结构
struct newchar{
int a;
int b;
};
#define
MAJOR_DEV_NUM 123
#define DEVICE_NAME "newchar"
打开设备,非常简单,就是增加
模块计数器,防止在打开设备的情况下删除模块,
当然想搞得复杂的话可进行各种限制检查,如只允许指定的用户打开等:
static int
newchar_open(struct inode *inode, struct file *filep)
{
MOD_INC_USE_COUNT;
return
0;
}
关闭设备,也很简单,减模块计数器:
static int newchar_release(struct inode *inode,
struct file *filep)
{
MOD_DEC_USE_COUNT;
return 0;
}
进行ioctl调用的基本处理函数
static int newchar_ioctl(struct inode *inode,
struct file *filep,
unsigned int cmd, unsigned long arg)
{
int
ret;
// 首先检查cmd是否合法
if (_IOC_TYPE(cmd) != NEWCHAR_IOC_MAGIC)
return -EINVAL;
if (_IOC_NR(cmd) > NEWCHAR_IOC_MAXNR) return
-EINVAL;
// 错误情况下的缺省返回值
ret = EINVAL;
switch(cmd)
{
case
KNEWCHAR_SET:
// 设置操作,将数据从用户空间拷贝到内核空间
{
struct newchar nc;
if(copy_from_user(&nc, (const char*)arg, sizeof(nc)) != 0)
return -EFAULT;
ret = do_set_newchar(&nc);
}
break;
case
KNEWCHAR_GET:
// GET操作通常会在数据缓冲区中先传递部分初始值作为数据查找条件,获取全部
//
数据后重新写回缓冲区
// 当然也可以根据具体情况什么也不传入直接向内核获取数据
{
struct newchar
nc;
if(copy_from_user(&nc, (const char*)arg, sizeof(nc)) != 0)
return -EFAULT;
ret = do_get_newchar(&nc);
if(ret ==
0){
if(copy_to_user((unsigned char *)arg, &nc,
sizeof(nc))!=0)
return -EFAULT;
}
}
break;
}
return
ret;
}
模块初始化函数,登记字符设备
static int __init _init(void)
{
int
result;
// 登记该字符设备,这是2.4以前的基本方法,到2.6后有了些变化,
//
是使用MKDEV和cdev_init()来进行,本文还是按老方法
result =
register_chrdev(MAJOR_DEV_NUM, DEVICE_NAME, &newchar_fops);
if
(result < 0) {
printk(KERN_WARNING __FUNCTION__ ": failed register
character device for /dev/newchar\n");
return result;
}
return
0;
}