Chinaunix首页 | 论坛 | 博客
  • 博客访问: 469174
  • 博文数量: 153
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 1575
  • 用 户 组: 普通用户
  • 注册时间: 2016-12-20 17:02
文章分类

全部博文(153)

文章存档

2017年(111)

2016年(42)

我的朋友

分类: Python/Ruby

2016-12-27 16:44:30

相信用python的同学不少,本人也一直对python情有独钟,毫无疑问python作为一门解释性动态语言没有那些编译型语言高效,但是python简洁、易读以及可扩展性等特性使得它大受青睐。

     工作中很多同事都在用python,但往往很少有人关注它的性能和惯用法,一般都是现学现用,毕竟python不是我们的主要语言,我们一般只是使用它来做一些系统管理的工作。但是我们为什么不做的更好呢?python zen中有这样一句:There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. 大意就是python鼓励使用一种最优的方法去完成一件事,这也是和ruby等的一个差异。所以一种好的python编写习惯个人认为很重要,本文就重点从性能角度出发对python的一些惯用法做一个简单总结,希望对大家有用~

    提到性能,最容易想到的是降低复杂度,一般可以通过测量代码回路复杂度(cyclomatic complexitly)和Landau符号(大O)来分析, 比如dict查找是O(1),而列表的查找却是O(n),显然数据的存储方式选择会直接影响算法的复杂度。

一、数据结构的选择:

     1. 在列表中查找:

   对于已经排序的列表考虑用bisect模块来实现查找元素,该模块将使用二分查找实现

def find(seq, el) :
    pos = bisect(seq, el)
    if pos == 0 or ( pos == len(seq) and seq[-1] != el ) :
        return -1
    return pos - 1

    而快速插入一个元素可以用:

 bisect.insort(list, element) 

这样就插入元素并且不需要再次调用 sort() 来保序,要知道对于长list代价很高.

    2. set代替列表: 

    比如要对一个list进行去重,最容易想到的实现:

seq = ['a', 'a', 'b']
res = []
for i in seq:
    if i not in res:
        res.append(i)

显然上面的实现的复杂度是O(n2),若改成:

seq = ['a', 'a', 'b']
res = set(seq)

复杂度马上降为O(n),当然这里假定set可以满足后续使用。

另外,set的union,intersection,difference等操作要比列表的迭代快的多,因此如果涉及到求列表交集,并集或者差集等问题可以转换为set来进行,平时使用的时候多注意下,特别当列表比较大的时候,性能的影响就更大。

    3. 使用python的collections模块替代内建容器类型:

collections有三种类型:

  1. deque:增强功能的类似list类型
  2. defaultdict:类似dict类型
  3. namedtuple:类似tuple类型

       列表是基于数组实现的,而deque是基于双链表的,所以后者在中间or前面插入元素,或者删除元素都会快很多。 

       defaultdict为新的键值添加了一个默认的工厂,可以避免编写一个额外的测试来初始化映射条目,比dict.setdefault更高效,引用python文档的一个例子:

#使用profile stats工具进行性能分析

>>> from pbp.scripts.profiler import profile, stats
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3),
... ('blue', 4), ('red', 1)]
>>> @profile('defaultdict')
... def faster():
... d = defaultdict(list)
... for k, v in s:
... d[k].append(v)
...
>>> @profile('dict')
... def slower():
... d = {}
... for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> slower(); faster()
Optimization: Solutions
[ 306 ]
>>> stats['dict']
{'stones': 16.587882671716077, 'memory': 396,
'time': 0.35166311264038086}
>>> stats['defaultdict']
{'stones': 6.5733464259021686, 'memory': 552,
'time': 0.13935494422912598}

可见性能提升了快3倍。defaultdict用一个list工厂作为参数,同样可用于内建类型,比如long等。


阅读全文请点击:
阅读(1463) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~