numpy 库
import numpy as np
1、random
用法:产生伪随机数
样例:
np.random.seed(0) //产生以0为种子的伪随机数生成器
order_arr = np.random.permutation(100) //返回100个伪随机数,返回值是一个array
2、mgrid
用法:返回多维结构,常见的如2D图形,3D图形。对比np.meshgrid,在处理时速度更快,且能处理多维(np.meshgrid只能处理2维)
ret = np.mgrid[ 第1维,第2维 ,第3维 , …]
返回多值,以多个矩阵的形式返回,第1返回值为第1维数据在最终结构中的分布,第2返回值为第2维数据在最终结构中的分布,以此类推。(分布以矩阵形式呈现)
例如np.mgrid[X , Y]
样本(i,j)的坐标为 (X[i,j] ,Y[i,j]),X代表第1维,Y代表第2维,在此例中分别为横纵坐标。
例如1D结构(array),如下:
>>> pp = np.mgrid[-5:5:5j] >>> pp
array([-5. , -2.5, 0. , 2.5, 5. ])
例如2D结构 (2D矩阵),如下:
>>> pp = np.mgrid[-1:1:2j,-2:2:3j] >>> x , y = pp >>> x
array([[-1., -1., -1.],
[ 1., 1., 1.]]) >>> y
array([[-2., 0., 2.],
[-2., 0., 2.]])
例如3D结构 (3D立方体),如下:
>>> pp = np.mgrid[-1:1:2j,-2:2:3j,-3:3:5j] >>> print pp
[[[[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]]
[[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]]]
[[[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]]
[[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]]]
[[[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]]
[[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]]]]
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
3、np.r_ , np.c_
用法:concatenation function
np.r_按row来组合array,
np.c_按colunm来组合array
>>> a = np.array([1,2,3]) >>> b = np.array([5,2,5]) >>> //测试 np.r_ >>> np.r_[a,b]
array([1, 2, 3, 5, 2, 5]) >>> >>> //测试 np.c_ >>> np.c_[a,b]
array([[1, 5],
[2, 2],
[3, 5]]) >>> np.c_[a,[0,0,0],b]
array([[1, 0, 5],
[2, 0, 2],
[3, 0, 5]])
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
matplotlib.pyplot 库
import matplotlib.pyplot as plt
1、scatter
用来画散点图的,对样本点着色。如下:X为一个n*2的矩阵,代表n个2维样本点,且每个样本点对应一个label y,用y来对颜色变量c赋值来区分颜色,按照cmap来布局。
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired)
2、axis
用法:设置布局策略
例如: plt.axis(‘tight’) ,表明采用紧致方案,需要将样本的边缘作为画布的边缘。
3、pcolormesh
用法:类似np.pcolor ,是对坐标点着色。
np.pcolormesh(X, Y, C, **kwargs)
例如有样本点(X[i,j] , Y[i,j]),对样本周围(包括样本所在坐标)的四个坐标点进行着色,C代表着色方案,kwargs里可以设置着色配置。
(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).
样例:plt.pcolormesh(XX, YY, Z>0, cmap=plt.cm.Paired)
4、contour
用法:画轮廓
样例:plt.contour(XX, YY, Z, colors=[‘k’, ‘k’, ‘k’], linestyles=[‘–’, ‘-‘, ‘–’],levels=[-.5, 0, .5])
svm 库
from sklearn import svm
1、decision_function
用法:Distance of the samples X to the separating hyperplane. 即样本点到超平面的距离。
样例:
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] //分别得到样本第1维和第2维的分布:
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) //用np.c_()将XX,YY拉平后的两个array按照列合并(此时是n*2的举证,有n个样本点,每个样本点有横纵2维),然后调用分类器集合的decision_function函数获得样本到超平面的距离。Z是一个n*1的矩阵(列向量),记录了n个样本距离超平面的距离。
附录(完整代码):
"""
================================
SVM Exercise
================================
A tutorial exercise for using different SVM kernels.
This exercise is used in the :ref:`using_kernels_tut` part of the
:ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`.
""" print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 0, :2]
y = y[y != 0]
n_sample = len(X)
np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)
X_train = X[:.9 * n_sample]
y_train = y[:.9 * n_sample]
X_test = X[.9 * n_sample:]
y_test = y[.9 * n_sample:] for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')):
clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train, y_train)
plt.figure(fig_num)
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired) plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10)
plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
levels=[-.5, 0, .5])
plt.title(kernel)
plt.show()