Chinaunix首页 | 论坛 | 博客
  • 博客访问: 12965
  • 博文数量: 2
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 20
  • 用 户 组: 普通用户
  • 注册时间: 2016-06-16 15:14
个人简介

长久坚持,必见成效。 Bad programmers worry about the code. Good programmers worry about data structures and their relationships. --- Linus Torvals

文章分类
文章存档

2016年(2)

我的朋友
最近访客

分类: LINUX

2016-07-06 15:12:14

 mutex相关的函数并不是linux kernel实现的,而是glibc实现的,源码位于nptl目录下。

 

首先说数据结构:

typedef union

{

  struct

  {

    int __lock;

    unsigned int __count;

    int __owner;

    unsigned int __nusers;

    /* KIND must stay at this position in the structure to maintain

       binary compatibility.  */

    int __kind;

    int __spins;

  } __data;

  char __size[__SIZEOF_PTHREAD_MUTEX_T];

  long int __align;

} pthread_mutex_t;

 

 int __lock;  资源竞争引用计数

 int __kind; 锁类型,init 函数中mutexattr 参数传递,该参数可以为NULL,一般为 PTHREAD_MUTEX_NORMAL

结构体其他元素暂时不了解,以后更新。

 

/*nptl/pthread_mutex_init.c*/

int

__pthread_mutex_init (mutex, mutexattr)

     pthread_mutex_t *mutex;

     const pthread_mutexattr_t *mutexattr;

{

  const struct pthread_mutexattr *imutexattr;

 

  assert (sizeof (pthread_mutex_t) <= __SIZEOF_PTHREAD_MUTEX_T);

 

  imutexattr = (const struct pthread_mutexattr *) mutexattr ?: &default_attr;

 

  /* Clear the whole variable.  */

  memset (mutex, '\0', __SIZEOF_PTHREAD_MUTEX_T);

 

  /* Copy the values from the attribute.  */

  mutex->__data.__kind = imutexattr->mutexkind & ~0x80000000;

 

  /* Default values: mutex not used yet.  */

  // mutex->__count = 0;        already done by memset

  // mutex->__owner = 0;        already done by memset

  // mutex->__nusers = 0;        already done by memset

  // mutex->__spins = 0;        already done by memset

 

  return 0;

}

 

init函数就比较简单了,将mutex结构体清零,设置结构体中__kind属性。

 

/*nptl/pthread_mutex_lock.c*/

int

__pthread_mutex_lock (mutex)

     pthread_mutex_t *mutex;

{

  assert (sizeof (mutex->__size) >= sizeof (mutex->__data));

 

  pid_t id = THREAD_GETMEM (THREAD_SELF, tid);

 

  switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))

    {

     …

    default:

      /* Correct code cannot set any other type.  */

    case PTHREAD_MUTEX_TIMED_NP:

    simple:

      /* Normal mutex.  */

      LLL_MUTEX_LOCK (mutex->__data.__lock);

      break;

 

    

    }

 

  /* Record the ownership.  */

  assert (mutex->__data.__owner == 0);

  mutex->__data.__owner = id;

#ifndef NO_INCR

  ++mutex->__data.__nusers;

#endif

 

  return 0;

}

该函数主要是调用LLL_MUTEX_LOCK, 省略部分为根据mutex结构体__kind属性不同值做些处理。

宏定义函数LLL_MUTEX_LOCK最终调用,将结构体mutex的__lock属性作为参数传递进来

#define __lll_mutex_lock(futex)                                                \

  ((void) ({                                                                \

    int *__futex = (futex);                                                \

    if (atomic_compare_and_exchange_bool_acq (__futex, 1, 0) != 0)        \

      __lll_lock_wait (__futex);                                        \

  }))

 

atomic_compare_and_exchange_bool_acq (__futex, 1, 0)宏定义为:

#define atomic_compare_and_exchange_bool_acq(mem, newval, oldval) \

  ({ __typeof (mem) __gmemp = (mem);                                      \

     __typeof (*mem) __gnewval = (newval);                              \

      \

     *__gmemp == (oldval) ? (*__gmemp = __gnewval, 0) : 1; })

 

这个宏实现的功能是:
如果mem的值等于oldval,则把newval赋值给mem,放回0,否则不做任何处理,返回1.

由此可以看出,当mutex锁限制的资源没有竞争时,__lock 属性被置为1,并返回0,不会调用__lll_lock_wait (__futex); 当存在竞争时,再次调用lock函数,该宏不做任何处理,返回1,调用__lll_lock_wait (__futex);

 

void

__lll_lock_wait (int *futex)

{

  do

    {

      int oldval = atomic_compare_and_exchange_val_acq (futex, 2, 1);

      if (oldval != 0)

lll_futex_wait (futex, 2);

    }

  while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0);

}

 

atomic_compare_and_exchange_val_acq (futex, 2, 1); 宏定义:

/* The only basic operation needed is compare and exchange.  */

#define atomic_compare_and_exchange_val_acq(mem, newval, oldval) \

  ({ __typeof (mem) __gmemp = (mem);                                      \

     __typeof (*mem) __gret = *__gmemp;                                      \

     __typeof (*mem) __gnewval = (newval);                              \

      \

     if (__gret == (oldval))                                              \

       *__gmemp = __gnewval;                                              \

     __gret; })

这个宏实现的功能是,当mem等于oldval时,将mem置为newval,始终返回mem原始值。

此时,futex等于1,futex将被置为2,并且返回1. 进而调用

lll_futex_wait (futex, 2);

#define lll_futex_timed_wait(ftx, val, timespec)                        \

({                                                                        \

   DO_INLINE_SYSCALL(futex, 4, (long) (ftx), FUTEX_WAIT, (int) (val),        \

     (long) (timespec));                                \

   _r10 == -1 ? -_retval : _retval;                                        \

})

该宏对于不同的平台架构会用不同的实现,采用汇编语言实现系统调用。不过确定的是调用了Linux kernel的futex系统调用。

futex在linux kernel的实现位于:kernel/futex.c

SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,

struct timespec __user *, utime, u32 __user *, uaddr2,

u32, val3)

{

struct timespec ts;

ktime_t t, *tp = NULL;

u32 val2 = 0;

int cmd = op & FUTEX_CMD_MASK;

 

if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||

      cmd == FUTEX_WAIT_BITSET ||

      cmd == FUTEX_WAIT_REQUEUE_PI)) {

if (copy_from_user(&ts, utime, sizeof(ts)) != 0)

return -EFAULT;

if (!timespec_valid(&ts))

return -EINVAL;

 

t = timespec_to_ktime(ts);

if (cmd == FUTEX_WAIT)

t = ktime_add_safe(ktime_get(), t);

tp = &t;

}

/*

 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.

 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.

 */

if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||

    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)

val2 = (u32) (unsigned long) utime;

 

return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);

}

futex具有六个形参,pthread_mutex_lock最终只关注了前四个。futex函数对参数进行判断和转化之后,直接调用do_futex

long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,

u32 __user *uaddr2, u32 val2, u32 val3)

{

int clockrt, ret = -ENOSYS;

int cmd = op & FUTEX_CMD_MASK;

int fshared = 0;

 

if (!(op & FUTEX_PRIVATE_FLAG))

fshared = 1;

 

clockrt = op & FUTEX_CLOCK_REALTIME;

if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)

return -ENOSYS;

 

switch (cmd) {

case FUTEX_WAIT:

val3 = FUTEX_BITSET_MATCH_ANY;

case FUTEX_WAIT_BITSET:

ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);

break;

         …

default:

ret = -ENOSYS;

}

return ret;

}

省略部分为对其他cmd的处理,pthread_mutex_lock函数最终传入的cmd参数为FUTEX_WAIT,所以在此只关注此分之,分析futex_wait函数的实现。

static int futex_wait(u32 __user *uaddr, int fshared,

      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)

{

struct hrtimer_sleeper timeout, *to = NULL;

struct restart_block *restart;

struct futex_hash_bucket *hb;

struct futex_q q;

int ret;

 

           … … //delete parameters check and convertion

retry:

/* Prepare to wait on uaddr. */

ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);

if (ret)

goto out;

 

/* queue_me and wait for wakeup, timeout, or a signal. */

futex_wait_queue_me(hb, &q, to);

… … //other handlers

return ret;

}

futex_wait_setup 将线程放进休眠队列中,

futex_wait_queue_me(hb, &q, to);将本线程休眠,等待唤醒。

 

唤醒后,__lll_lock_wait函数中的while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0); 语句将被执行,由于此时futex在pthread_mutex_unlock中置为0,所以atomic_compare_and_exchange_bool_acq (futex, 2, 0)语句将futex置为2,返回0. 退出循环,访问用户控件的临界资源。

 

/*nptl/pthread_mutex_unlock.c*/

int

internal_function attribute_hidden

__pthread_mutex_unlock_usercnt (mutex, decr)

     pthread_mutex_t *mutex;

     int decr;

{

  switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))

    {

     … …

    default:

      /* Correct code cannot set any other type.  */

    case PTHREAD_MUTEX_TIMED_NP:

    case PTHREAD_MUTEX_ADAPTIVE_NP:

      /* Normal mutex.  Nothing special to do.  */

      break;

    }

 

  /* Always reset the owner field.  */

  mutex->__data.__owner = 0;

  if (decr)

    /* One less user.  */

    --mutex->__data.__nusers;

 

  /* Unlock.  */

  lll_mutex_unlock (mutex->__data.__lock);

 

  return 0;

}

省略部分是针对不同的__kind属性值做的一些处理,最终调用 lll_mutex_unlock。

该宏函数最终的定义为:

#define __lll_mutex_unlock(futex)                        \

  ((void) ({                                                \

    int *__futex = (futex);                                \

    int __val = atomic_exchange_rel (__futex, 0);        \

\

    if (__builtin_expect (__val > 1, 0))                \

      lll_futex_wake (__futex, 1);                        \

  }))

atomic_exchange_rel (__futex, 0);宏为:

#define atomic_exchange_rel(mem, value) \

  (__sync_synchronize (), __sync_lock_test_and_set (mem, value))

实现功能为:将mem设置为value,返回原始mem值。

__builtin_expect (__val > 1, 0) 是编译器优化语句,告诉编译器期望值,也就是大多数情况下__val > 1 ?是0,其逻辑判断依然为if(__val > 1)为真的话执行 lll_futex_wake。

现在分析,在资源没有被竞争的情况下,__futex 为1,那么返回值__val则为1,那么 lll_futex_wake (__futex, 1);        不会被执行,不产生系统调用。 当资源产生竞争的情况时,根据对pthread_mutex_lock 函数的分析,__futex为2, __val则为2,执行 lll_futex_wake (__futex, 1); 从而唤醒等在临界资源的线程。

lll_futex_wake (__futex, 1); 最终会调动同一个系统调用,即futex, 只是传递的cmd参数为FUTEX_WAKE。

在linux kernel的futex实现中,调用

static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)

{

struct futex_hash_bucket *hb;

struct futex_q *this, *next;

struct plist_head *head;

union futex_key key = FUTEX_KEY_INIT;

int ret;

 

if (!bitset)

return -EINVAL;

 

ret = get_futex_key(uaddr, fshared, &key);

if (unlikely(ret != 0))

goto out;

 

hb = hash_futex(&key);

spin_lock(&hb->lock);

head = &hb->chain;

 

plist_for_each_entry_safe(this, next, head, list) {

if (match_futex (&this->key, &key)) {

if (this->pi_state || this->rt_waiter) {

ret = -EINVAL;

break;

}

 

/* Check if one of the bits is set in both bitsets */

if (!(this->bitset & bitset))

continue;

 

wake_futex(this);

if (++ret >= nr_wake)

break;

}

}

 

spin_unlock(&hb->lock);

put_futex_key(fshared, &key);

out:

return ret;

}

该函数遍历在该mutex上休眠的所有线程,调用wake_futex进行唤醒,

static void wake_futex(struct futex_q *q)

{

struct task_struct *p = q->task;

 

/*

 * We set q->lock_ptr = NULL _before_ we wake up the task. If

 * a non futex wake up happens on another CPU then the task

 * might exit and p would dereference a non existing task

 * struct. Prevent this by holding a reference on p across the

 * wake up.

 */

get_task_struct(p);

 

plist_del(&q->list, &q->list.plist);

/*

 * The waiting task can free the futex_q as soon as

 * q->lock_ptr = NULL is written, without taking any locks. A

 * memory barrier is required here to prevent the following

 * store to lock_ptr from getting ahead of the plist_del.

 */

smp_wmb();

q->lock_ptr = NULL;

 

wake_up_state(p, TASK_NORMAL);

put_task_struct(p);

}

wake_up_state(p, TASK_NORMAL);  的实现位于kernel/sched.c中,属于linux进程调度的技术。

阅读(3140) | 评论(0) | 转发(0) |
0

上一篇:Linux 线程间的同步和互斥

下一篇:没有了

给主人留下些什么吧!~~