Chinaunix首页 | 论坛 | 博客
  • 博客访问: 168912
  • 博文数量: 66
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 20
  • 用 户 组: 普通用户
  • 注册时间: 2016-06-23 15:21
文章分类

全部博文(66)

文章存档

2016年(66)

我的朋友

分类: LINUX

2016-05-25 09:51:15

常见算法时间复杂度:
O(1): 表示算法的运行时间为常量
O(n): 表示该算法是线性算法
O(㏒2n): 二分查找算法
O(n2): 对数组进行排序的各种简单算法,例如直接插入排序的算法。
O(n3): 做两个n阶矩阵的乘法运算
O(2n): 求具有n个元素集合的所有子集的算法
O(n!): 求具有N个元素的全排列的算法

优<---------------------------<劣

O(1)2n)<O(n)<O(n2)<O(2n)

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n2)、立方阶O(n3)、……k次方阶O(nk)、指数阶O(2n)。




O(1)


Temp=i;i=j;j=temp;                     

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i     { 
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }          
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                       
2.3. 
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    {  
       s=a+b;    ③
       b=a;     ④  
       a=s;     ⑤
    }
解: 语句1的频度:2,        
           语句2的频度: n,        
          语句3的频度: n-1,        
          语句4的频度:n-1,    
          语句5的频度:n-1,                                  
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                  
O(log2n )

2.4. 
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1,  
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
          取最大值f(n)= log2n,
          T(n)=O(log2n )

O(n^3)

2.5. 
    for(i=0;i     {  
       for(j=0;j        {
          for(k=0;k              x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
阅读(1093) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~