Chinaunix首页 | 论坛 | 博客
  • 博客访问: 93656
  • 博文数量: 18
  • 博客积分: 1400
  • 博客等级: 上尉
  • 技术积分: 180
  • 用 户 组: 普通用户
  • 注册时间: 2009-02-08 08:26
文章分类
文章存档

2010年(4)

2009年(14)

我的朋友

分类: LINUX

2009-05-14 22:27:32

转自 http://blog.csdn.net/donkevin/archive/2008/08/28/2845194.aspx 

 

 

RealView MDK在中国推出已经有一段时间了,而且作为未来发展的趋势必将取代ADS1.2,成为工程师广泛应用的开发平台。

但是,以前的S3C2440的项目都是由ADS开发,而且我在网上搜索并没有发现有ADS1.2工程移植的例子,只能自己摸索。而且刚刚接触嵌入式的这个部分,希望把这个成果与大家分享,让其他的人少走弯路。

移植思路:

        不兼容问题主要在于启动的汇编代码中加入了很多的与编译器相关的调用,只需修改原有的2440init.s部分代码就可以实现。而修改Realview自身引入的s3c2440a.s启动代码修要修改的内容过多。因而,采用第一种方案。

 

编译中出现的问题以及解决:

1  .\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Main (referred from 2440init.o).

Main -> main,新的Realview MDK中大小写认为名称不同

 

2.\output\LJD2440TEST.axf: Error: L6915E: Library reports error: scatter-load file declares no heap or stack regions and __user_initial_stackheap is not defined

    加入部分代码

                EXPORT  __user_initial_stackheap

__user_initial_stackheap

 

                LDR     R0, =  Heap_Mem

                LDR     R1, =(Stack_Mem + USR_Stack_Size)

                LDR     R2, = (Heap_Mem +      Heap_Size)

                LDR     R3, = Stack_Mem

                BX      LR

 

3

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RW$$Limit (referred from 2440lib.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RO$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RO$$Limit (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$RW$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$ZI$$Base (referred from main.o).

.\output\LJD2440TEST.axf: Error: L6218E: Undefined symbol Image$$ZI$$Limit (referred from main.o).

 

办法:

        重新编写.sct加载文件

4, Error: L6238E: foo.o(.text) contains invalid call from '~PRES8' function to'REQ8' function Warning: L6306W: '~PRES8' section foo.o(.text) should not use the address of 'REQ8' function foobar

 

办法:在每个汇编文件的开头,添加“PRESERVE8”指令

附件:

1,  修改过的2440init.s

    ;=========================================
; NAME: 2440INIT.S
; DESC: C start up codes
;       Configure memory, ISR ,stacks
; Initialize C-variables
; HISTORY:
; 2002.02.25:kwtark: ver 0.0
; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode
; 2003.03.14:DonGo: Modified for 2440.
; 2008.07.23:dai modified for RealView MDK,
;=========================================

 GET option.inc
 GET memcfg.inc
 GET 2440addr.inc

BIT_SELFREFRESH EQU (1<<22)

;Pre-defined constants
USERMODE    EQU  0x10
FIQMODE     EQU  0x11
IRQMODE     EQU  0x12
SVCMODE     EQU  0x13
ABORTMODE   EQU  0x17
UNDEFMODE   EQU  0x1b
MODEMASK    EQU  0x1f
NOINT       EQU  0xc0

;The location of stacks
UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~
SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~
UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~
AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~
IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~
FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~

;=========================================================================================================================
;check if tasm.exe is used.
;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状态执行半字对准的Thumb指令
;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用于根据处理器工作状态确定编译器编译方式
;code16伪指令指示汇编编译器后面的指令为16位的thumb指令
;code32伪指令指示汇编编译器后面的指令为32位的arm指令
;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译)
;Check if tasm.exe(armasm -16 1.0) is used.
 GBLL    THUMBCODE
 [ {CONFIG} = 16
THUMBCODE SETL  {TRUE}
     CODE32
   |
THUMBCODE SETL  {FALSE}
    ]

   MACRO
 MOV_PC_LR
   [ THUMBCODE
     bx lr
   |
     mov pc,lr
   ]
 MEND

   MACRO
 MOVEQ_PC_LR
   [ THUMBCODE
        bxeq lr
   |
     moveq pc,lr
   ]
 MEND

;=========================================================================================================================
;注意下面这段程序是个宏定义,下面包含的HandlerXXX HANDLER HandleXXX将都被下面这段程序展开
;这段程序用于把中断服务程序的首地址装载到pc中
;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。
;每个字空间都有一个标号,以Handle***命名。
   MACRO
$HandlerLabel HANDLER $HandleLabel

$HandlerLabel
 sub sp,sp,#4 ;decrement sp(to store jump address)
 stmfd sp!,{r0} ;PUSH the work register to stack(lr does not push because it return to original address)
 ldr     r0,=$HandleLabel;load the address of HandleXXX to r0
 ldr     r0,[r0]  ;load the contents(service routine start address) of HandleXXX
 str     r0,[sp,#4]      ;store the contents(ISR) of HandleXXX to stack
 ldmfd   sp!,{r0,pc}     ;POP the work register and pc(jump to ISR)
 MEND

;=========================================================================================================================
;一个arm程序由RO,RW,ZI三个断组成 其中RO为代码段,RW是已经初始化的全局变量,ZI是未初始化的全局变量(对于GNU工具 对应的概念是TEXT ,DATA,BSS)
;bootloader要将RW段复制到ram中并将ZI段清零 编译器使用下列段来记录各段的起始和结束地址
; |Image$$RO$$Base| ; RO段起始地址
; |Image$$RO$$Limit| ; RO段结束地址加1
; |Image$$RW$$Base| ; RW段起始地址
; |Image$$RW$$Limit| ; RW段结束地址加1
; |Image$$ZI$$Base| ; ZI段起始地址
; |Image$$ZI$$Limit| ; ZI段结束地址加1
;这些标号的值是通过编译器的设定来确定的 如编译软件中对ro-base和rw-base的设定,例如 ro-base=0xc000000 rw-base=0xc5f0000

 IMPORT  |Image$$RO$$Base| ; Base of ROM code
 IMPORT  |Image$$RO$$Limit|  ; End of ROM code (=start of ROM data)
 IMPORT  |Image$$RW$$Base|   ; Base of RAM to initialise
 IMPORT  |Image$$ZI$$Base|   ; Base and limit of area
 IMPORT  |Image$$ZI$$Limit|  ; to zero initialise

;DAI  stack size configuration DAI, ref s3c2440a.s
;// Stack Configuration (Stack Sizes in Bytes)
;//   Undefined Mode      <0x0-0xFFFFFFFF:8>
;//   Supervisor Mode     <0x0-0xFFFFFFFF:8>
;//   Abort Mode          <0x0-0xFFFFFFFF:8>
;//   Fast Interrupt Mode <0x0-0xFFFFFFFF:8>
;//   Interrupt Mode      <0x0-0xFFFFFFFF:8>
;//   User/System Mode    <0x0-0xFFFFFFFF:8>
;//

UND_Stack_Size  EQU     0x00000000
SVC_Stack_Size  EQU     0x00000008
ABT_Stack_Size  EQU     0x00000000
FIQ_Stack_Size  EQU     0x00000000
IRQ_Stack_Size  EQU     0x00000080
USR_Stack_Size  EQU     0x00000400


Stack_Size      EQU     (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + FIQ_Stack_Size + IRQ_Stack_Size + USR_Stack_Size)

  AREA    STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem       SPACE   Stack_Size

Stack_Top       EQU     Stack_Mem + Stack_Size


;// Heap Configuration
;//     Heap Size (in Bytes) <0x0-0xFFFFFFFF>
;//

Heap_Size       EQU     0x00000000

                AREA    HEAP, NOINIT, READWRITE, ALIGN=3
Heap_Mem        SPACE   Heap_Size


 IMPORT MMU_SetAsyncBusMode
 IMPORT MMU_SetFastBusMode ;hzh

 IMPORT  main    ; The main entry of mon program

; AREA    Init,CODE,READONLY
 AREA    RESET,CODE,READONLY   ;dai
  PRESERVE8          ;dai 
; ENTRY        ;dai
 
 EXPORT __ENTRY
__ENTRY
ResetEntry
 ;1)The code, which converts to Big-endian, should be in little endian code.
 ;2)The following little endian code will be compiled in Big-Endian mode.
 ;  The code byte order should be changed as the memory bus width.
 ;3)The pseudo instruction,DCD can not be used here because the linker generates error.
 ASSERT :DEF:ENDIAN_CHANGE
 [ ENDIAN_CHANGE
     ASSERT  :DEF:ENTRY_BUS_WIDTH
     [ ENTRY_BUS_WIDTH=32
  b ChangeBigEndian     ;DCD 0xea000007
     ]

     [ ENTRY_BUS_WIDTH=16
  andeq r14,r7,r0,lsl #20   ;DCD 0x0007ea00
     ]

     [ ENTRY_BUS_WIDTH=8
  streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea
     ]
 |
     b ResetHandler
    ]
 b HandlerUndef ;handler for Undefined mode
 b HandlerSWI ;handler for SWI interrupt
 b HandlerPabort ;handler for PAbort
 b HandlerDabort ;handler for DAbort
 b .  ;reserved
 b HandlerIRQ ;handler for IRQ interrupt
 b HandlerFIQ ;handler for FIQ interrupt

;@0x20
 b EnterPWDN ; Must be @0x20.
ChangeBigEndian
;@0x24
 [ ENTRY_BUS_WIDTH=32
     DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0
     DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80;  //Big-endian
     DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0
 ]
 [ ENTRY_BUS_WIDTH=16
     DCD 0x0f10ee11
     DCD 0x0080e380
     DCD 0x0f10ee01
 ]
 [ ENTRY_BUS_WIDTH=8
     DCD 0x100f11ee
     DCD 0x800080e3
     DCD 0x100f01ee
    ]
 DCD 0xffffffff  ;swinv 0xffffff is similar with NOP and run well in both endian mode.
 DCD 0xffffffff
 DCD 0xffffffff
 DCD 0xffffffff
 DCD 0xffffffff
 b ResetHandler
 
HandlerFIQ      HANDLER HandleFIQ
HandlerIRQ      HANDLER HandleIRQ
HandlerUndef    HANDLER HandleUndef
HandlerSWI      HANDLER HandleSWI
HandlerDabort   HANDLER HandleDabort
HandlerPabort   HANDLER HandlePabort

IsrIRQ ;中断服务程序
 sub sp,sp,#4       ;reserved for PC
 stmfd sp!,{r8-r9}

 ldr r9,=INTOFFSET
 ldr r9,[r9]
 ldr r8,=HandleEINT0
 add r8,r8,r9,lsl #2 ;r8 = r8 + r9*4
 ldr r8,[r8]
 str r8,[sp,#8]
 ldmfd sp!,{r8-r9,pc}


 LTORG

;=======
; ENTRY
;=======
ResetHandler
 ldr r0,=WTCON       ;watch dog disable
 ldr r1,=0x0
 str r1,[r0]

 ldr r0,=INTMSK
 ldr r1,=0xffffffff  ;all interrupt disable
 str r1,[r0]

 ldr r0,=INTSUBMSK
 ldr r1,=0x7fff  ;all sub interrupt disable
 str r1,[r0]

 [ {FALSE}
 ;rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);
 ; Led_Display
 ldr r0,=GPFCON
 ldr r1,=0x5500
 str r1,[r0]
 ldr r0,=GPFDAT
 ldr r1,=0x10
 str r1,[r0]
 ]

 ;To reduce PLL lock time, adjust the LOCKTIME register.
 ldr r0,=LOCKTIME
 ldr r1,=0xffffff
 str r1,[r0]

    [ PLL_ON_START
 ; Added for confirm clock divide. for 2440.
 ; Setting value Fclk:Hclk:Pclk
 ldr r0,=CLKDIVN
 ldr r1,=CLKDIV_VAL  ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.
 str r1,[r0]
; MMU_SetAsyncBusMode and MMU_SetFastBusMode over 4K, so do not call here
; call it after copy, hzh
; [ CLKDIV_VAL>1   ; means Fclk:Hclk is not 1:1.
; bl MMU_SetAsyncBusMode
; |
; bl MMU_SetFastBusMode ; default value.
; ]
 ;program has not been copied, so use these directly, hzh
 [ CLKDIV_VAL>1   ; means Fclk:Hclk is not 1:1.
 mrc p15,0,r0,c1,c0,0
 orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA
 mcr p15,0,r0,c1,c0,0
 |
 mrc p15,0,r0,c1,c0,0
 bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF
 mcr p15,0,r0,c1,c0,0
 ]
 
 ;Configure UPLL
 ldr r0,=UPLLCON
 ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) 
 str r1,[r0]
 nop ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed.
 nop
 nop
 nop
 nop
 nop
 nop
 ;Configure MPLL
 ldr r0,=MPLLCON
 ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV)  ;Fin=16.9344MHz
 str r1,[r0]
    ]

 ;Check if the boot is caused by the wake-up from SLEEP mode.
 ldr r1,=GSTATUS2
 ldr r0,[r1]
 tst r0,#0x2
 ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.
 bne WAKEUP_SLEEP

 EXPORT StartPointAfterSleepWakeUp
StartPointAfterSleepWakeUp

 ;Set memory control registers
  ;ldr r0,=SMRDATA
  adrl r0, SMRDATA ;be careful!, hzh
 ldr r1,=BWSCON ;BWSCON Address
 add r2, r0, #52 ;End address of SMRDATA

0
 ldr r3, [r0], #4
 str r3, [r1], #4
 cmp r2, r0
 bne %B0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;       When EINT0 is pressed,  Clear SDRAM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; check if EIN0 button is pressed

       ldr r0,=GPFCON
 ldr r1,=0x0
 str r1,[r0]
 ldr r0,=GPFUP
 ldr r1,=0xff
 str r1,[r0]

 ldr r1,=GPFDAT
 ldr r0,[r1]
       bic r0,r0,#(0x1e<<1)  ; bit clear
 tst r0,#0x1
 bne %F1
 
 

; Clear SDRAM Start
 
 ldr r0,=GPFCON
 ldr r1,=0x55aa
 str r1,[r0]
; ldr r0,=GPFUP
; ldr r1,=0xff
; str r1,[r0]
 ldr r0,=GPFDAT
 ldr r1,=0x0
 str r1,[r0] ;LED=****

 mov r1,#0
 mov r2,#0
 mov r3,#0
 mov r4,#0
 mov r5,#0
 mov r6,#0
 mov r7,#0
 mov r8,#0
 
 ldr r9,=0x4000000   ;64MB
 ldr r0,=0x30000000

 stmia r0!,{r1-r8}
 subs r9,r9,#32
 bne %B0

;Clear SDRAM End

1

   ;Initialize stacks
 bl InitStacks

;===========================================================
 ;bl Led_Test
 
 ldr r0, =BWSCON
 ldr r0, [r0]
 ands r0, r0, #6  ;OM[1:0] != 0, NOR FLash boot
 bne copy_proc_beg  ;do not read nand flash
 adr r0, ResetEntry  ;OM[1:0] == 0, NAND FLash boot
 cmp r0, #0    ;if use Multi-ice,
 bne copy_proc_beg  ;do not read nand flash for boot
 ;nop
;===========================================================
nand_boot_beg
 mov r5, #NFCONF
 ;set timing value
 ldr r0, =(7<<12)|(7<<8)|(7<<4)
 str r0, [r5]
 ;enable control
 ldr r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)
 str r0, [r5, #4]
 
 bl ReadNandID
 mov r6, #0
 ldr r0, =0xec73
 cmp r5, r0
 beq %F1
 ldr r0, =0xec75
 cmp r5, r0
 beq %F1
 mov r6, #1

 bl ReadNandStatus
 
 mov r8, #0
 ldr r9, =ResetEntry

 ands r0, r8, #0x1f
 bne  %F3
 mov  r0, r8
 bl  CheckBadBlk
 cmp  r0, #0
 addne r8, r8, #32
 bne  %F4

 mov r0, r8
 mov r1, r9
 bl ReadNandPage
 add r9, r9, #512
 add r8, r8, #1

 cmp r8, #256
 bcc %B2
 
 mov r5, #NFCONF   ;DsNandFlash
 ldr r0, [r5, #4]
 bic r0, r0, #1
 str r0, [r5, #4]
 ldr pc, =copy_proc_beg
;===========================================================
copy_proc_beg
 adr r0, ResetEntry
 ldr r2, BaseOfROM
 cmp r0, r2
 ldreq r0, TopOfROM
 beq InitRam 
 ldr r3, TopOfROM

 ldmia r0!, {r4-r7}
 stmia r2!, {r4-r7}
 cmp r2, r3
 bcc %B0
 
 sub r2, r2, r3
 sub r0, r0, r2    
  
InitRam 
 ldr r2, BaseOfBSS
 ldr r3, BaseOfZero 
0
 cmp r2, r3
 ldrcc r1, [r0], #4
 strcc r1, [r2], #4
 bcc %B0 

 mov r0, #0
 ldr r3, EndOfBSS

 cmp r2, r3
 strcc r0, [r2], #4
 bcc %B1
 
 ldr pc, =%F2  ;goto compiler address
     ;跳转到2 的地址么
2
 
; [ CLKDIV_VAL>1   ; means Fclk:Hclk is not 1:1.
; bl MMU_SetAsyncBusMode
; |
; bl MMU_SetFastBusMode ; default value.
; ]
 
 ;bl Led_Test

;===========================================================
   ; Setup IRQ handler
 ldr r0,=HandleIRQ       ;This routine is needed
 ldr r1,=IsrIRQ   ;if there is not 'subs pc,lr,#4' at 0x18, 0x1c
 str r1,[r0]

; ;Copy and paste RW data/zero initialized data
; ldr r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
; ldr r1, =|Image$$RW$$Base|  ; and RAM copy
; ldr r3, =|Image$$ZI$$Base|
;
; ;Zero init base => top of initialised data
; cmp r0, r1      ; Check that they are different
; beq %F2
;1
; cmp r1, r3      ; Copy init data
; ldrcc r2, [r0], #4    ;--> LDRCC r2, [r0] + ADD r0, r0, #4
; strcc r2, [r1], #4    ;--> STRCC r2, [r1] + ADD r1, r1, #4
; bcc %B1
;2
; ldr r1, =|Image$$ZI$$Limit| ; Top of zero init segment
; mov r2, #0
;3
; cmp r3, r1      ; Zero init
; strcc r2, [r3], #4
; bcc %B3


    [ :LNOT:THUMBCODE
   bl main ;Do not use main() because ......
   ;ldr pc, =main ;hzh
   b .
    ]

    [ THUMBCODE  ;for start-up code for Thumb mode
   orr lr,pc,#1
   bx lr
   CODE16
   bl main ;Do not use main() because ......
   b .
  CODE32
    ]


;function initializing stacks
InitStacks
 ;Do not use DRAM,such as stmfd,ldmfd......
 ;SVCstack is initialized before
 ;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'
 mrs r0,cpsr
 bic r0,r0,#MODEMASK
 orr r1,r0,#UNDEFMODE|NOINT
 msr cpsr_cxsf,r1  ;UndefMode
 ldr sp,=UndefStack  ; UndefStack=0x33FF_5C00

 orr r1,r0,#ABORTMODE|NOINT
 msr cpsr_cxsf,r1  ;AbortMode
 ldr sp,=AbortStack  ; AbortStack=0x33FF_6000

 orr r1,r0,#IRQMODE|NOINT
 msr cpsr_cxsf,r1  ;IRQMode
 ldr sp,=IRQStack  ; IRQStack=0x33FF_7000

 orr r1,r0,#FIQMODE|NOINT
 msr cpsr_cxsf,r1  ;FIQMode
 ldr sp,=FIQStack  ; FIQStack=0x33FF_8000

 bic r0,r0,#MODEMASK|NOINT
 orr r1,r0,#SVCMODE
 msr cpsr_cxsf,r1  ;SVCMode
 ldr sp,=SVCStack  ; SVCStack=0x33FF_5800

 ;USER mode has not be initialized.

 mov pc,lr
 ;The LR register will not be valid if the current mode is not SVC mode.
 
;===========================================================
ReadNandID
 mov      r7,#NFCONF
 ldr      r0,[r7,#4]  ;NFChipEn();
 bic      r0,r0,#2
 str      r0,[r7,#4]
 mov      r0,#0x90  ;WrNFCmd(RdIDCMD);
 strb     r0,[r7,#8]
 mov      r4,#0   ;WrNFAddr(0);
 strb     r4,[r7,#0xc]
1       ;while(NFIsBusy());
 ldr      r0,[r7,#0x20]
 tst      r0,#1
 beq      %B1
 ldrb     r0,[r7,#0x10] ;id  = RdNFDat()<<8;
 mov      r0,r0,lsl #8
 ldrb     r1,[r7,#0x10] ;id |= RdNFDat();
 orr      r5,r1,r0
 ldr      r0,[r7,#4]  ;NFChipDs();
 orr      r0,r0,#2
 str      r0,[r7,#4]
 mov   pc,lr 
 
ReadNandStatus
 mov   r7,#NFCONF
 ldr      r0,[r7,#4]  ;NFChipEn();
 bic      r0,r0,#2
 str      r0,[r7,#4]
 mov      r0,#0x70  ;WrNFCmd(QUERYCMD);
 strb     r0,[r7,#8] 
 ldrb     r1,[r7,#0x10] ;r1 = RdNFDat();
 ldr      r0,[r7,#4]  ;NFChipDs();
 orr      r0,r0,#2
 str      r0,[r7,#4]
 mov   pc,lr

WaitNandBusy
 mov      r0,#0x70  ;WrNFCmd(QUERYCMD);
 mov      r1,#NFCONF
 strb     r0,[r1,#8]
1       ;while(!(RdNFDat()&0x40)); 
 ldrb     r0,[r1,#0x10]
 tst      r0,#0x40
 beq   %B1
 mov      r0,#0   ;WrNFCmd(READCMD0);
 strb     r0,[r1,#8]
 mov      pc,lr

CheckBadBlk
 mov  r7, lr
 mov  r5, #NFCONF
 
 bic      r0,r0,#0x1f ;addr &= ~0x1f;
 ldr      r1,[r5,#4]  ;NFChipEn()
 bic      r1,r1,#2
 str      r1,[r5,#4]

 mov      r1,#0x50  ;WrNFCmd(READCMD2)
 strb     r1,[r5,#8]
 mov      r1, #5;6  ;6->5
 strb     r1,[r5,#0xc] ;WrNFAddr(5);(6) 6->5
 strb     r0,[r5,#0xc] ;WrNFAddr(addr)
 mov      r1,r0,lsr #8 ;WrNFAddr(addr>>8)
 strb     r1,[r5,#0xc]
 cmp      r6,#0   ;if(NandAddr)  
 movne    r0,r0,lsr #16 ;WrNFAddr(addr>>16)
 strneb   r0,[r5,#0xc]
 
; bl  WaitNandBusy ;WaitNFBusy()
 ;do not use WaitNandBusy, after WaitNandBusy will read part A!
 mov r0, #100
1
 subs r0, r0, #1
 bne %B1
2
 ldr r0, [r5, #0x20]
 tst r0, #1
 beq %B2 

 ldrb r0, [r5,#0x10] ;RdNFDat()
 sub  r0, r0, #0xff
 
 mov      r1,#0   ;WrNFCmd(READCMD0)
 strb     r1,[r5,#8]
 
 ldr      r1,[r5,#4]  ;NFChipDs()
 orr      r1,r1,#2
 str      r1,[r5,#4]
 
 mov  pc, r7
 
ReadNandPage
 mov   r7,lr
 mov      r4,r1
 mov      r5,#NFCONF

 ldr      r1,[r5,#4]  ;NFChipEn()
 bic      r1,r1,#2
 str      r1,[r5,#4] 

 mov      r1,#0   ;WrNFCmd(READCMD0)
 strb     r1,[r5,#8] 
 strb     r1,[r5,#0xc] ;WrNFAddr(0)
 strb     r0,[r5,#0xc] ;WrNFAddr(addr)
 mov      r1,r0,lsr #8 ;WrNFAddr(addr>>8)
 strb     r1,[r5,#0xc] 
 cmp      r6,#0   ;if(NandAddr)  
 movne    r0,r0,lsr #16 ;WrNFAddr(addr>>16)
 strneb   r0,[r5,#0xc]
 
 ldr      r0,[r5,#4]  ;InitEcc()
 orr      r0,r0,#0x10
 str      r0,[r5,#4]
 
 bl       WaitNandBusy ;WaitNFBusy()
 
 mov      r0,#0   ;for(i=0; i<512; i++)
1
 ldrb     r1,[r5,#0x10] ;buf[i] = RdNFDat()
 strb     r1,[r4,r0]
 add      r0,r0,#1
 bic      r0,r0,#0x10000
 cmp      r0,#0x200
 bcc      %B1
 
 ldr      r0,[r5,#4]  ;NFChipDs()
 orr      r0,r0,#2
 str      r0,[r5,#4]
  
 mov   pc,r7

;--------------------LED test
 EXPORT Led_Test
Led_Test
 mov r0, #0x56000000
 mov r1, #0x5500
 str r1, [r0, #0x50]

 mov r1, #0x50
 str r1, [r0, #0x54]
 mov r2, #0x100000
1
 subs r2, r2, #1
 bne %B1
 
 mov r1, #0xa0
 str r1, [r0, #0x54]
 mov r2, #0x100000
2
 subs r2, r2, #1
 bne %B2
 b %B0
 mov pc, lr

;===========================================================

 LTORG

;GCS0->SST39VF1601
;GCS1->16c550
;GCS2->IDE
;GCS3->CS8900
;GCS4->DM9000
;GCS5->CF Card
;GCS6->SDRAM
;GCS7->unused

SMRDATA DATA
; Memory configuration should be optimized for best performance
; The following parameter is not optimized.
; Memory access cycle parameter strategy
; 1) The memory settings is  safe parameters even at HCLK=75Mhz.
; 2) SDRAM refresh period is for HCLK<=75Mhz.

 DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))
 DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC))   ;GCS0
 DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC))   ;GCS1
 DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC))   ;GCS2
 DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC))   ;GCS3
 DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC))   ;GCS4
 DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC))   ;GCS5
 DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN))    ;GCS6
 DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN))    ;GCS7
 DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT)

 DCD 0x32     ;SCLK power saving mode, BANKSIZE 128M/128M

 DCD 0x30     ;MRSR6 CL=3clk
 DCD 0x30     ;MRSR7 CL=3clk
 
BaseOfROM DCD |Image$$RO$$Base|
TopOfROM DCD |Image$$RO$$Limit|
BaseOfBSS DCD |Image$$RW$$Base|
BaseOfZero DCD |Image$$ZI$$Base|
EndOfBSS DCD |Image$$ZI$$Limit|

 ALIGN
 
;Function for entering power down mode
; 1. SDRAM should be in self-refresh mode.
; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.
; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.
; 4. The I-cache may have to be turned on.
; 5. The location of the following code may have not to be changed.

;void EnterPWDN(int CLKCON);
EnterPWDN
 mov r2,r0  ;r2=rCLKCON
 tst r0,#0x8  ;SLEEP mode?
 bne ENTER_SLEEP

ENTER_STOP
 ldr r0,=REFRESH
 ldr r3,[r0]  ;r3=rREFRESH
 mov r1, r3
 orr r1, r1, #BIT_SELFREFRESH
 str r1, [r0]  ;Enable SDRAM self-refresh

 mov r1,#16   ;wait until self-refresh is issued. may not be needed.
0 subs r1,r1,#1
 bne %B0

 ldr r0,=CLKCON  ;enter STOP mode.
 str r2,[r0]

 mov r1,#32
0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.
 bne %B0  ;2) Or wait here until the CPU&Peripherals will be turned-off
   ;   Entering SLEEP mode, only the reset by wake-up is available.

 ldr r0,=REFRESH ;exit from SDRAM self refresh mode.
 str r3,[r0]

 MOV_PC_LR

ENTER_SLEEP
 ;NOTE.
 ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.

 ldr r0,=REFRESH
 ldr r1,[r0]  ;r1=rREFRESH
 orr r1, r1, #BIT_SELFREFRESH
 str r1, [r0]  ;Enable SDRAM self-refresh

 mov r1,#16   ;Wait until self-refresh is issued,which may not be needed.
0 subs r1,r1,#1
 bne %B0

 ldr r1,=MISCCR
 ldr r0,[r1]
 orr r0,r0,#(7<<17)  ;Set SCLK0=0, SCLK1=0, SCKE=0.
 str r0,[r1]

 ldr r0,=CLKCON  ; Enter sleep mode
 str r2,[r0]

 b .   ;CPU will die here.


WAKEUP_SLEEP
 ;Release SCLKn after wake-up from the SLEEP mode.
 ldr r1,=MISCCR
 ldr r0,[r1]
 bic r0,r0,#(7<<17)  ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.
 str r0,[r1]

 ;Set memory control registers
  ldr r0,=SMRDATA ;be careful!, hzh
 ldr r1,=BWSCON ;BWSCON Address
 add r2, r0, #52 ;End address of SMRDATA
0
 ldr r3, [r0], #4
 str r3, [r1], #4
 cmp r2, r0
 bne %B0

 mov r1,#256
0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.
 bne %B0

 ldr r1,=GSTATUS3  ;GSTATUS3 has the start address just after SLEEP wake-up
 ldr r0,[r1]

 mov pc,r0
 
;=====================================================================
; Clock division test
; Assemble code, because VSYNC time is very short
;=====================================================================
 EXPORT CLKDIV124
 EXPORT CLKDIV144
 
CLKDIV124
 
 ldr     r0, = CLKDIVN
 ldr     r1, = 0x3  ; 0x3 = 1:2:4
 str     r1, [r0]
; wait until clock is stable
 nop
 nop
 nop
 nop
 nop

 ldr     r0, = REFRESH
 ldr     r1, [r0]
 bic  r1, r1, #0xff
 bic  r1, r1, #(0x7<<8)
 orr  r1, r1, #0x470 ; REFCNT135
 str     r1, [r0]
 nop
 nop
 nop
 nop
 nop
 mov     pc, lr

CLKDIV144
 ldr     r0, = CLKDIVN
 ldr     r1, = 0x4  ; 0x4 = 1:4:4
 str     r1, [r0]
; wait until clock is stable
 nop
 nop
 nop
 nop
 nop

 ldr     r0, = REFRESH
 ldr     r1, [r0]
 bic  r1, r1, #0xff
 bic  r1, r1, #(0x7<<8)
 orr  r1, r1, #0x630 ; REFCNT675 - 1520
 str     r1, [r0]
 nop
 nop
 nop
 nop
 nop
 mov     pc, lr

 ALIGN

;==========================================================================================================================================
;一般中断处理程序的存储结构
;分为3个区域
;   1,异常向量表(_IRQ_BASEADDRESS ~ _IRQ_BASEADDRESS+0x4*8)
;   本段无 2,none vector mode的判断程序(_IRQ_BASEADDRESS+0x80~...)
;   3,isr表(中断处理服务表)(_IRQ_BASEADDRESS+0x100~...)
;   无 最后还有堆栈区域

 AREA RamData, DATA, READWRITE

 ^   _ISR_STARTADDRESS  ; _ISR_STARTADDRESS=0x33FF_FF00
HandleReset  #   4
HandleUndef  #   4
HandleSWI  #   4
HandlePabort    #   4
HandleDabort    #   4
HandleReserved  #   4
HandleIRQ  #   4
HandleFIQ  #   4

;Do not use the label 'IntVectorTable',
;The value of IntVectorTable is different with the address you think it may be.
;IntVectorTable
;@0x33FF_FF20
HandleEINT0  #   4
HandleEINT1  #   4
HandleEINT2  #   4
HandleEINT3  #   4
HandleEINT4_7 #   4
HandleEINT8_23 #   4
HandleCAM  #   4  ; Added for 2440.
HandleBATFLT #   4
HandleTICK  #   4
HandleWDT  #   4
HandleTIMER0  #   4
HandleTIMER1  #   4
HandleTIMER2  #   4
HandleTIMER3  #   4
HandleTIMER4  #   4
HandleUART2   #   4
;@0x33FF_FF60
HandleLCD   #   4
HandleDMA0  #   4
HandleDMA1  #   4
HandleDMA2  #   4
HandleDMA3  #   4
HandleMMC  #   4
HandleSPI0  #   4
HandleUART1  #   4
HandleNFCON  #   4  ; Added for 2440.
HandleUSBD  #   4
HandleUSBH  #   4
HandleIIC  #   4
HandleUART0  #   4
HandleSPI1   #   4
HandleRTC   #   4
HandleADC   #   4
;@0x33FF_FFA0

;dai
; User Initial Stack & Heap
;without this the error is  Error: L6915E: Library reports error: scatter-load file declares no heap or stack regions and __user_initial_stackheap is not defined
                AREA    |.text|, CODE, READONLY

                IMPORT  __use_two_region_memory
                EXPORT  __user_initial_stackheap
    EXPORT Stack_Mem
__user_initial_stackheap

                LDR     R0, =  Heap_Mem
                LDR     R1, =(Stack_Mem + USR_Stack_Size)
                LDR     R2, = (Heap_Mem +      Heap_Size)
                LDR     R3, = Stack_Mem
                BX      LR


 END

2,  加载描述文件LJD2440TESTRAM.sct

 ; *************************************************************
; *** Scatter-Loading Description File generated by uVision ***
; *************************************************************
;dai, 2008.07.25

LR_IROM1 0x30200000 0x0FFFFFFF  {    ; load region size_region
;LR_IROM1 0x00000000 0x0FFFFFFF  {    ; load region size_region
  RO +0  {  ; load address = execution address
   *.o (RESET, +First)
   *(InRoot$$Sections)
   .ANY (+RO)
  }
  RW +0  {  ; RW data
   .ANY (+RW +ZI)
  }
  ZI +0  {  ; ZI data
   .ANY (+ZI)
  }
}

 

参考文献:

ADSRealView MDK

ARM开发工具RealView MDK使用入门

阅读(3804) | 评论(1) | 转发(0) |
给主人留下些什么吧!~~

chinaunix网友2009-11-12 08:55:36

楼主能介绍下S3C2440在MDK中的启动代码配置吗?我有2个问题:一是MDK中stack configuration和heap configuration不知该填什么,为什么这么填。二是每次我使能启动代码的时钟并配置好后,把程序下到板子上就卡死,不使能时钟就没问题,是不是我的时钟配置有问题?谢谢。