在linux内核中,input设备用input_dev结构体描述,使用input子系统实现输入设备驱动的时候,驱动的核心工作是向系统报告按键、触摸屏、键盘、鼠标等输入事件(event,通过input_event结构体描述),一再需要关心文件操作接口,因为input子系统已经完成了文件操作接口。驱动报告的事件经过InputCore和EventHandler最终到达用户空间。现在了解了input子系统的基本思想,下面来看一下input子系统的3个基本的数据结构:
- struct input_dev {
- const char *name; //名称
- const char *phys; //设备在系统中的物理路径
- const char *uniq; //设备唯一识别符
- struct input_id id;
-
- unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
- unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
- unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
- unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; 支持的鼠标绝对值事件
- unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; 支持的其它事件类型
- unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
- unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
- unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
- unsigned long swbit[BITS_TO_LONGS(SW_CNT)];
-
- unsigned int keycodemax; //keycode表的大小
- unsigned int keycodesize; //keycode表中元素个数
- void *keycode; //设备的键盘表
- int (*setkeycode)(struct input_dev *dev, int scancode, int keycode);//配置keycode表
- int (*getkeycode)(struct input_dev *dev, int scancode, int *keycode);//获取keycode表
-
- struct ff_device *ff;
-
- unsigned int repeat_key;//保存上一个键值
- struct timer_list timer;
-
- int sync;
-
- int abs[ABS_MAX + 1];
- int rep[REP_MAX + 1];
- unsigned long key[BITS_TO_LONGS(KEY_CNT)];
- unsigned long led[BITS_TO_LONGS(LED_CNT)];
- unsigned long snd[BITS_TO_LONGS(SND_CNT)];
- unsigned long sw[BITS_TO_LONGS(SW_CNT)];
-
- int absmax[ABS_MAX + 1];
- int absmin[ABS_MAX + 1];
- int absfuzz[ABS_MAX + 1];
- int absflat[ABS_MAX + 1];
- //操作接口
- int (*open)(struct input_dev *dev);
- void (*close)(struct input_dev *dev);
- int (*flush)(struct input_dev *dev, struct file *file);
- int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);
-
- struct input_handle *grab;
-
- spinlock_t event_lock;
- struct mutex mutex;
-
- unsigned int users;
- int going_away;
-
- struct device dev;
-
- struct list_head h_list;
- struct list_head node;
- };
- // input_dev->evbit表示设备支持的事件类型,可以是下列值的组合
#define EV_SYN 0x00 //同步事件
#define EV_KEY 0x01 //绝对二进制值,如键盘或按钮
#define EV_REL 0x02 //绝对结果,如鼠标设备
#define EV_ABS 0x03 //绝对整数值,如操纵杆或书写板
#define EV_MSC 0x04 //其它类
#define EV_SW 0x05 //开关事件
#define EV_LED 0x11 //LED或其它指示设备
#define EV_SND 0x12 //声音输出,如蜂鸣器
#define EV_REP 0x14 //允许按键自重复
#define EV_FF 0x15 //力反馈
#define EV_PWR 0x16 //电源管理事件
include/linux/input.h中定义了支持的类型 - struct input_handler {
-
- void *private;
-
- void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
- int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
- void (*disconnect)(struct input_handle *handle);
- void (*start)(struct input_handle *handle);
-
- const struct file_operations *fops;
- int minor;
- const char *name;
-
- const struct input_device_id *id_table;
- const struct input_device_id *blacklist;
-
- struct list_head h_list;
- struct list_head node;
- };
-
- struct input_handle {
-
- void *private;
-
- int open;
- const char *name;
-
- struct input_dev *dev;
- struct input_handler *handler;
-
- struct list_head d_node;
- struct list_head h_node;
- };
如下图代表了input_dev,input_handler,input_handle,3者之间的关系。一类handler可以和多个硬件设备相关联,一个硬件设备可以和多个handler相关联。例如:一个触摸屏设备可以作为一个event设备,作为一个鼠标设备,也可以作为一个触摸设备,所以一个设备需要与多个平台驱动进行连接。而一个平台驱动也不只为一个设备服务,一个触摸平台驱动可能要为A,B,C3个触摸设备提供上层驱动,所以需要这样一对多的连接。
下面来看看input字符设备注册过程:
- static int __init input_init(void)
- {
- int err;
-
- input_init_abs_bypass();
-
- err = class_register(&input_class);
- if (err) {
- printk(KERN_ERR "input: unable to register input_dev class/n");
- return err;
- }
-
- err = input_proc_init();
- if (err)
- goto fail1;
-
- err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
- if (err) {
- printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
- goto fail2;
- }
-
- return 0;
-
- fail2: input_proc_exit();
- fail1: class_unregister(&input_class);
- return err;
- }
- subsys_initcall(input_init);
下面来看input子系统的file_operations,这里只有一个打开函数input_open_file,这个在事件传递部分讲解。
- static const struct file_operations input_fops = {
- .owner = THIS_MODULE,
- .open = input_open_file,
- };
下边来看input_dev设备的注册:
- int input_register_device(struct input_dev *dev)
- {
- static atomic_t input_no = ATOMIC_INIT(0);
- struct input_handler *handler;
- const char *path;
- int error;
-
- __set_bit(EV_SYN, dev->evbit);
-
-
-
-
-
-
- init_timer(&dev->timer);
-
-
-
-
-
- if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
- dev->timer.data = (long) dev;
- dev->timer.function = input_repeat_key;
- dev->rep[REP_DELAY] = 250;
- dev->rep[REP_PERIOD] = 33;
- }
-
- if (!dev->getkeycode)
- dev->getkeycode = input_default_getkeycode;
-
- if (!dev->setkeycode)
- dev->setkeycode = input_default_setkeycode;
-
- dev_set_name(&dev->dev, "input%ld",
- (unsigned long) atomic_inc_return(&input_no) - 1);
-
- error = device_add(&dev->dev);
- if (error)
- return error;
-
- path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
- printk(KERN_INFO "input: %s as %s/n",
- dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
- kfree(path);
-
- error = mutex_lock_interruptible(&input_mutex);
- if (error) {
- device_del(&dev->dev);
- return error;
- }
-
- list_add_tail(&dev->node, &input_dev_list);
-
- list_for_each_entry(handler, &input_handler_list, node)
- input_attach_handler(dev, handler);
-
- input_wakeup_procfs_readers();
-
- mutex_unlock(&input_mutex);
-
- return 0;
- }
跟踪程序,来看看input_attach_handler的实现:
- static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
- {
- const struct input_device_id *id;
- int error;
-
- if (handler->blacklist && input_match_device(handler->blacklist, dev))
- return -ENODEV;
-
- id = input_match_device(handler->id_table, dev);
- if (!id)
- return -ENODEV;
-
- error = handler->connect(handler, dev, id);
- if (error && error != -ENODEV)
- printk(KERN_ERR
- "input: failed to attach handler %s to device %s, "
- "error: %d/n",
- handler->name, kobject_name(&dev->dev.kobj), error);
-
- return error;
- }
下边来看看这个匹配函数:如果id->flags存在,并且相应的标志为被设定则进行比较。
- static const struct input_device_id *input_match_device(const struct input_device_id *id,
- struct input_dev *dev)
- {
- int i;
-
- for (; id->flags || id->driver_info; id++) {
-
- if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
- if (id->bustype != dev->id.bustype)
- continue;
-
- if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
- if (id->vendor != dev->id.vendor)
- continue;
-
- if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
- if (id->product != dev->id.product)
- continue;
-
- if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
- if (id->version != dev->id.version)
- continue;
-
- MATCH_BIT(evbit, EV_MAX);
- MATCH_BIT(keybit, KEY_MAX);
- MATCH_BIT(relbit, REL_MAX);
- MATCH_BIT(absbit, ABS_MAX);
- MATCH_BIT(mscbit, MSC_MAX);
- MATCH_BIT(ledbit, LED_MAX);
- MATCH_BIT(sndbit, SND_MAX);
- MATCH_BIT(ffbit, FF_MAX);
- MATCH_BIT(swbit, SW_MAX);
-
- return id;
- }
-
- return NULL;
- }
- #define MATCH_BIT(bit, max) /
- for (i = 0; i < BITS_TO_LONGS(max); i++) /
- if ((id->bit[i] & dev->bit[i]) != id->bit[i]) /
- break; /
- if (i != BITS_TO_LONGS(max)) /
- continue;
Input_dev和input_handler匹配后调用input_handler的connect。以evdev_handler为例:
如果匹配上了就会创建一个evdev,它里边封装了一个handle,会把input_dev和input_handler关联到一起。
-
-
-
-
- static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
- const struct input_device_id *id)
- {
- struct evdev *evdev;
- int minor;
- int error;
-
-
-
-
-
-
-
-
-
-
-
- for (minor = 0; minor < EVDEV_MINORS; minor++)
- if (!evdev_table[minor])
- break;
-
- if (minor == EVDEV_MINORS) {
- printk(KERN_ERR "evdev: no more free evdev devices/n");
- return -ENFILE;
- }
-
- evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
- if (!evdev)
- return -ENOMEM;
-
- INIT_LIST_HEAD(&evdev->client_list);
- spin_lock_init(&evdev->client_lock);
- mutex_init(&evdev->mutex);
- init_waitqueue_head(&evdev->wait);
-
- snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
- evdev->exist = 1;
- evdev->minor = minor;
-
- evdev->handle.dev = input_get_device(dev);
- evdev->handle.name = evdev->name;
- evdev->handle.handler = handler;
- evdev->handle.private = evdev;
-
- dev_set_name(&evdev->dev, evdev->name);
- evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
- evdev->dev.class = &input_class;
- evdev->dev.parent = &dev->dev;
- evdev->dev.release = evdev_free;
-
- device_initialize(&evdev->dev);
-
-
-
-
-
- error = input_register_handle(&evdev->handle);
- if (error)
- goto err_free_evdev;
-
- error = evdev_install_chrdev(evdev);
- if (error)
- goto err_unregister_handle;
-
- error = device_add(&evdev->dev);
- if (error)
- goto err_cleanup_evdev;
-
- return 0;
- 。。。。。。。。。。
- }
input子系统最重要的部分就是向上层report了。这里还是先介绍几个数据结构:
- struct input_event {
- struct timeval time;
- __u16 type;
- __u16 code;
- __s32 value;
- };
- struct evdev_client {
- struct input_event buffer[EVDEV_BUFFER_SIZE];
- int head;
- int tail;
- spinlock_t buffer_lock;
- struct fasync_struct *fasync;
- struct evdev *evdev;
- struct list_head node;
- };
- static struct input_handler evdev_handler = {
- .event = evdev_event, //向系统报告input事件,系统通过read方法读取
- .connect = evdev_connect, //和input_dev匹配后调用connect构建
- .disconnect = evdev_disconnect,
- .fops = &evdev_fops, //event设备文件的操作方法
- .minor = EVDEV_MINOR_BASE,//次设备号基准值
- .name = "evdev",
- .id_table = evdev_ids, //匹配规则
- };
这里的次设备号是EVDEV_MINOR_BASE(64),也就是说evdev_handler所表示的设备文件范围(13,64)~(13,64+32)。如下一个结构体:evdev_handler匹配所有设备。
- static const struct input_device_id evdev_ids[] = {
- { .driver_info = 1 },
- { },
- };
看一下这张图会对上边的结构有清楚的认知了:
这个是evdev_handler是fops,下面的讲解中会用到其中的open,read函数。
- static const struct file_operations evdev_fops = {
- .owner = THIS_MODULE,
- .read = evdev_read,
- .write = evdev_write,
- .poll = evdev_poll,
- .open = evdev_open,
- .release = evdev_release,
- .unlocked_ioctl = evdev_ioctl,
- #ifdef CONFIG_COMPAT
- .compat_ioctl = evdev_ioctl_compat,
- #endif
- .fasync = evdev_fasync,
- .flush = evdev_flush
- };
在驱动程序中我们会调用input_report_abs等函数:
设备驱动通过宏set_bit()告诉input子系统它支持哪些事件,如下所示
set_bit(EV_KEY, input_dev->keybit); //EV_KEY事件支持的事件码struct input_dev中有两个成员,一个是unsigned long evbit,一个是unsigned long keybit,分别用来表示设备所支持的事件类型和按键类型。
用于报告EV_KEY、EV_REL、EV_ABS、EV_FF、EV_SW等事件的函数有:
void input_report_key(struct input_dev *dev, unsigned int code, int value)
void input_report_rel(struct input_dev *dev, unsigned int code, int value)
void input_report_abs(struct input_dev *dev, unsigned int code, int value)
void input_report_ff_status(struct input_dev *dev, unsigned int code, int value)
void input_report_switch(struct input_dev *dev, unsigned int code, int value)
如果你觉得麻烦,你也可以只记住1个函数(因为上述函数都是通过它实现的)
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
相关参数介绍:
code:
事件的代码。如果事件的类型是EV_KEY,该代码code为设备键盘代码。代码值0-127为键盘上的按键代码,0x110-0x116为鼠标上按键代码,其中0x110(BTN_LEFT)为鼠标左键,0x111(BTN_RIGHT)为鼠标右键,0x112(BTN_MIDDLE)为鼠标中键。其它代码含义请参看include/linux/input.h文件。
value:
事件的值。如果事件的类型是EV_KEY,当按键按下时值为1,松开时值为0.
事件报告完毕后,设备驱动需要使用input_sync函数告诉输入子系统一个完整的报告已经发送。
void input_sync(struct input_dev *dev)
{
input_event(dev,EV_SYN,SYN_REPORT,0);
}
这一点在鼠标移动处理中很重要,因为鼠标坐标的X分量和Y分量是分开传送的,需要利用input_sync函数来同步。
跟踪input_event如下:
- void input_event(struct input_dev *dev,
- unsigned int type, unsigned int code, int value)
- {
- unsigned long flags;
-
- if (is_event_supported(type, dev->evbit, EV_MAX)) {
-
- spin_lock_irqsave(&dev->event_lock, flags);
-
- add_input_randomness(type, code, value);
- input_handle_event(dev, type, code, value);
- spin_unlock_irqrestore(&dev->event_lock, flags);
- }
- }
跟踪input_handle_event如下:
- static void input_handle_event(struct input_dev *dev,
- unsigned int type, unsigned int code, int value)
- {
- int disposition = INPUT_IGNORE_EVENT;
-
- switch (type) {
- 。。。。。。。。。。。。。。。。
- if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
- dev->sync = 0;
-
- if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
- dev->event(dev, type, code, value);
-
- if (disposition & INPUT_PASS_TO_HANDLERS)
- input_pass_event(dev, type, code, value);
- }
如果该事件需要input device来完成,就会将disposition设置成INPUT_PASS_TO_DEVICE,如果需要input handler来完成,就会将disposition设置成INPUT_PASS_TO_DEVICE,如果需要两者都参与,则将disposition设置成INPUT_PASS_TO_ALL。跟踪input_pass_event如下:
- static void input_pass_event(struct input_dev *dev,
- unsigned int type, unsigned int code, int value)
- {
- struct input_handle *handle;
-
- rcu_read_lock();
-
- handle = rcu_dereference(dev->grab);
- if (handle)
-
- handle->handler->event(handle, type, code, value);
- else
- list_for_each_entry_rcu(handle, &dev->h_list, d_node)
- if (handle->open)
- handle->handler->event(handle,
- type, code, value);
- rcu_read_unlock();
- }
比如下边的evdev_handler的evdev_event:
- static void evdev_event(struct input_handle *handle,
- unsigned int type, unsigned int code, int value)
- {
- struct evdev *evdev = handle->private;
- struct evdev_client *client;
- struct input_event event;
-
- do_gettimeofday(&event.time);
- event.type = type;
- event.code = code;
- event.value = value;
-
- rcu_read_lock();
- client = rcu_dereference(evdev->grab);
- if (client)
-
- evdev_pass_event(client, &event);
- else
- list_for_each_entry_rcu(client, &evdev->client_list, node)
- evdev_pass_event(client, &event);
-
- rcu_read_unlock();
-
- wake_up_interruptible(&evdev->wait);
- }
- static void evdev_pass_event(struct evdev_client *client,
- struct input_event *event)
- {
-
-
-
- spin_lock(&client->buffer_lock);
-
- client->buffer[client->head++] = *event;
- client->head &= EVDEV_BUFFER_SIZE - 1;
- spin_unlock(&client->buffer_lock);
-
- kill_fasync(&client->fasync, SIGIO, POLL_IN);
- }
这里总结一下事件的传递过程:首先在驱动层中,调用inport_report_abs,然后他调用了input core层的input_event,input_event调用了input_handle_event对事件进行分派,调用input_pass_event,在这里他会把事件传递给具体的handler层,然后在相应handler的event处理函数中,封装一个event,然后把它投入evdev的那个client_list上的client的事件buffer中,等待用户空间来读取。
当用户空间打开设备节点/dev/input/event0~/dev/input/event4的时候,会使用input_fops中的input_open_file()函数,input_open_file()->evdev_open()(如果handler是evdev的话)->evdev_open_device()->input_open_device()->dev->open()。也就是struct file_operations input_fops提供了通用接口,最终会调用具体input_dev的open函数。下边看一下用户程序打开文件时的过程,首先调用了input_open_file:
- static int input_open_file(struct inode *inode, struct file *file)
- {
- struct input_handler *handler;
- const struct file_operations *old_fops, *new_fops = NULL;
- int err;
-
- lock_kernel();
-
-
- handler = input_table[iminor(inode) >> 5];
- if (!handler || !(new_fops = fops_get(handler->fops))) {
- err = -ENODEV;
- goto out;
- }
-
-
-
-
-
- if (!new_fops->open) {
- fops_put(new_fops);
- err = -ENODEV;
- goto out;
- }
-
- old_fops = file->f_op;
- file->f_op = new_fops;
-
- err = new_fops->open(inode, file);
-
- if (err) {
- fops_put(file->f_op);
- file->f_op = fops_get(old_fops);
- }
- fops_put(old_fops);
- out:
- unlock_kernel();
- return err;
- }
这里还是假设handler是evdev_handler。
- static int evdev_open(struct inode *inode, struct file *file)
- {
- struct evdev *evdev;
- struct evdev_client *client;
-
- int i = iminor(inode) - EVDEV_MINOR_BASE;
- int error;
-
- if (i >= EVDEV_MINORS)
- return -ENODEV;
-
- error = mutex_lock_interruptible(&evdev_table_mutex);
- if (error)
- return error;
-
- evdev = evdev_table[i];
- if (evdev)
- get_device(&evdev->dev);
- mutex_unlock(&evdev_table_mutex);
-
- if (!evdev)
- return -ENODEV;
-
- client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
- if (!client) {
- error = -ENOMEM;
- goto err_put_evdev;
- }
-
- spin_lock_init(&client->buffer_lock);
-
- client->evdev = evdev;
- evdev_attach_client(evdev, client);
-
- error = evdev_open_device(evdev);
- if (error)
- goto err_free_client;
-
- file->private_data = client;
- return 0;
-
- err_free_client:
- evdev_detach_client(evdev, client);
- kfree(client);
- err_put_evdev:
- put_device(&evdev->dev);
- return error;
- }
- static int evdev_open_device(struct evdev *evdev)
- {
- int retval;
-
- retval = mutex_lock_interruptible(&evdev->mutex);
- if (retval)
- return retval;
-
- if (!evdev->exist)
- retval = -ENODEV;
-
- else if (!evdev->open++) {
- retval = input_open_device(&evdev->handle);
- if (retval)
- evdev->open--;
- }
-
- mutex_unlock(&evdev->mutex);
- return retval;
- }
- int input_open_device(struct input_handle *handle)
- {
- struct input_dev *dev = handle->dev;
- int retval;
-
- retval = mutex_lock_interruptible(&dev->mutex);
- if (retval)
- return retval;
-
- if (dev->going_away) {
- retval = -ENODEV;
- goto out;
- }
-
- handle->open++;
-
- if (!dev->users++ && dev->open)
- retval = dev->open(dev);
-
- if (retval) {
- dev->users--;
- if (!--handle->open) {
-
-
-
-
- synchronize_rcu();
- }
- }
-
- out:
- mutex_unlock(&dev->mutex);
- return retval;
- }
下面是用户进程读取event的底层实现:
- static ssize_t evdev_read(struct file *file, char __user *buffer,
- size_t count, loff_t *ppos)
- {
-
- struct evdev_client *client = file->private_data;
- struct evdev *evdev = client->evdev;
- struct input_event event;
- int retval;
-
- if (count < input_event_size())
- return -EINVAL;
-
- if (client->head == client->tail && evdev->exist &&
- (file->f_flags & O_NONBLOCK))
- return -EAGAIN;
-
- retval = wait_event_interruptible(evdev->wait,
- client->head != client->tail || !evdev->exist);
- if (retval)
- return retval;
-
- if (!evdev->exist)
- return -ENODEV;
-
- while (retval + input_event_size() <= count &&
- evdev_fetch_next_event(client, &event)) {
-
- if (input_event_to_user(buffer + retval, &event))
- return -EFAULT;
-
- retval += input_event_size();
- }
-
- return retval;
- }
- static int evdev_fetch_next_event(struct evdev_client *client,
- struct input_event *event)
- {
- int have_event;
-
- spin_lock_irq(&client->buffer_lock);
-
- have_event = client->head != client->tail;
-
- if (have_event) {
- *event = client->buffer[client->tail++];
- client->tail &= EVDEV_BUFFER_SIZE - 1;
- }
-
- spin_unlock_irq(&client->buffer_lock);
-
- return have_event;
- }
- int input_event_to_user(char __user *buffer,
- const struct input_event *event)
- {
-
- if (INPUT_COMPAT_TEST) {
- struct input_event_compat compat_event;
-
- compat_event.time.tv_sec = event->time.tv_sec;
- compat_event.time.tv_usec = event->time.tv_usec;
- compat_event.type = event->type;
- compat_event.code = event->code;
- compat_event.value = event->value;
-
- if (copy_to_user(buffer, &compat_event,
- sizeof(struct input_event_compat)))
- return -EFAULT;
-
- } else {
-
- if (copy_to_user(buffer, event, sizeof(struct input_event)))
- return -EFAULT;
- }
-
- return 0;
- }
这里总结一下:如果两个进程打开同一个文件,每个进程在打开时都会生成一个evdev_client,evdev_client被挂在evdev的client_list,在handle收到一个事件的时候,会把事件copy到挂在client_list上的所有evdev_client的buffer中。这样所有打开同一个设备的进程都会收到这个消息而唤醒。