这个项目给人的启发也是不小的,例如

在此处截断和关于奇点的讨论。尤其是后一点,很有意思,在此详细论述一下。
书中的图有些误导人,因为那是一个中心排斥势的散射图,而Lennard-Jones势函数在散射中应该是起到了吸引的作用。假设Lennard-Jones势函数中的能量是量子化的。当入射粒子能量和瞄准距离都合适时,可能被俘获。也就是形成共振现象。在此处所谓的奇点便是指的这个。当粒子接近到

时,被俘获。此时,粒子能量分为径向能量和切向能量。被俘获时,径向能量与在该距离下的Lennard-Jones势相抵消,而只剩余切向能量。从而粒子只能绕行很多圈。
此时,径向能量为:

那么,

,两边再同时除以E,即可得到如下关系式:

也就是书中提到的,被积分式接近零,使得积分出现奇点。
书中给出的公式为:

其中第一项的奇点是

,即下域;第二项的奇点便是
-
!
-
module param
-
implicit none
-
real,parameter :: pi=3.1415926
-
real,parameter :: E=1.0 ! incident energy in unit of V0
-
real,parameter :: Bmin=0.1 ! minimum of impact parameter
-
real,parameter :: Bmax=2.4 ! maximum of impact parameter
-
real,parameter :: Rmax=2.5 ! maximum of radius
-
real,parameter :: Tolr=0.0001 ! tolerance for turning point search
-
integer,parameter :: Nb=20 ! number of steps in impact parameter b
-
integer,parameter :: Npts=40 ! number of quadrature points
-
real,parameter :: db=(Bmax-Bmin)/(Nb-1)
-
integer,parameter :: BnumMax=100
-
-
end module
-
!
-
-
!
-
Program main
-
! Project 1: Scattering by the Lennard-Jones potential
-
!
-
use param
-
call archon
-
-
stop
-
-
end program
-
!
-
-
!
-
subroutine archon
-
!
-
! Global variables
-
use param
-
! Local variables
-
implicit none
-
real :: Impact(0:BnumMax)=0.0
-
integer :: Ib=0
-
real :: Angle(0:BnumMax)=0.0
-
real :: Int1,Int2,Rmin
-
-
do Ib=0,(Nb-1),1
-
Impact(Ib)=Bmin+Ib*db
-
call Theta(Impact(Ib),Int1,Int2,Rmin)
-
write(*,*)"Int1:",Int1,"Int2:",Int2
-
Angle(Ib)=2.0*Impact(Ib)*(Int1-Int2)*180.0/pi
-
write(*,*)"b(",Ib,"):",Impact(Ib),"Angle(",Ib,"):",Angle(Ib)
-
end do
-
-
return
-
-
end subroutine
-
!
-
-
!
-
subroutine Theta(b,Int1,Int2,Rmin)
-
!
-
! Global variables
-
use param
-
! Input/Output variables
-
real :: b ! impact parameter (Input)
-
real :: Int1 ! the 1st integral (Output)
-
real :: Int2 ! the 2nd integral (Output)
-
real :: Rmin ! radius of the closes approach (Output)
-
! Local variables
-
real :: r=1.0
-
real :: dr=0.2
-
real,external :: pot,fun,fun1,fun2
-
real :: u
-
real :: total=0.0
-
integer :: Iu
-
real :: umax
-
real :: step
-
-
Rmin=Rmax
-
-
do while(dr>Tolr)
-
Rmin=Rmin-dr
-
if(fun(Rmin,b)<0)then
-
Rmin=Rmin+dr
-
dr=dr/2.0
-
end if
-
end do
-
!
-
umax=sqrt(Rmax-b)
-
step=umax/Npts
-
total=0.0
-
do Iu=1,Npts,1
-
u=step*(Iu-0.5)
-
r=u**2+b
-
total=total+u*fun1(r,b)
-
end do
-
Int1=2.0*step*total
-
!
-
total=0.0
-
umax=sqrt(Rmax-Rmin)
-
step=umax/Npts
-
do Iu=1,Npts,1
-
u=step*(Iu-0.5)
-
r=u**2+Rmin
-
total=total+u*fun2(r,b)
-
end do
-
Int2=2.0*step*total
-
-
return
-
end subroutine
-
!
-
-
!
-
real function pot(r)
-
implicit none
-
real :: r
-
pot=4.0*(1/r**12-1/r**6)
-
return
-
end function
-
!
-
-
!
-
real function fun(r,b)
-
use param
-
implicit none
-
real :: r,b
-
real,external :: pot
-
fun=1-b**2/r**2-pot(r)/E
-
return
-
end function
-
!
-
-
!
-
real function fun1(r,b)
-
implicit none
-
real :: r,b
-
fun1=1/r**2*(1/sqrt(1-b**2/r**2))
-
return
-
end function
-
!
-
-
!
-
real function fun2(r,b)
-
use param
-
implicit none
-
real :: r,b
-
real,external :: pot
-
fun2=1/r**2*(1/sqrt(1-b**2/r**2-pot(r)/E))
-
return
-
end function
-
!
得到的计算结果为:
b(0): 0.100000001 Angle(0): 168.910172
b(1): 0.221052647 Angle(1): 169.855896
b(2): 0.342105299 Angle(2): 164.271286
b(3): 0.463157952 Angle(3): 158.649170
b(4): 0.584210575 Angle(4): 152.974335
b(5): 0.705263257 Angle(5): 147.230621
b(6): 0.826315880 Angle(6): 141.401428
b(7): 0.947368503 Angle(7): 135.465668
b(8): 1.06842113 Angle(8): 129.401596
b(9): 1.18947387 Angle(9): 123.180473
b(10): 1.31052649 Angle(10): 116.771988
b(11): 1.43157911 Angle(11): 110.134575
b(12): 1.55263174 Angle(12): 103.215302
b(13): 1.67368436 Angle(13): 95.9486313
b(14): 1.79473698 Angle(14): 88.2398682
b(15): 1.91578972 Angle(15): 79.9521637
b(16): 2.03684235 Angle(16): 70.8765564
b(17): 2.15789509 Angle(17): 60.6551018
b(18): 2.27894759 Angle(18): 48.5505600
b(19): 2.40000033 Angle(19): 32.5175247
当碰撞参数很小时,出现大角度散射现象;当碰撞参数变大时,散射角逐渐减小。因此计算结果也是符合物理直觉的。
阅读(1481) | 评论(0) | 转发(0) |