Chinaunix首页 | 论坛 | 博客
  • 博客访问: 74003
  • 博文数量: 18
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 137
  • 用 户 组: 普通用户
  • 注册时间: 2015-06-08 15:03
文章分类

全部博文(18)

文章存档

2015年(18)

我的朋友

分类: 嵌入式

2015-11-03 20:32:15

模型舵机的构造


      舵机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机发出讯号给舵机,经由电路板上的 IC判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。位置检测器其实就是可变电阻,当舵机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。一般的伺服马达是将细铜线缠绕在三极转子上,当电流流经线圈时便会产生磁场,与转子外围的磁铁产生排斥作用,进而产生转动的作用力。依据物理学原理,物体的转动惯量与质量成正比,因此要转动质量愈大的物体,所需的作用力也愈大。舵机为求转速快、耗电小,于是将细铜线缠绕成极薄的中空圆柱体,形成一个重量极轻的五极中空转子,并将磁铁置於圆柱体内,这就是无核心马达。

  为了适合不同的工作环境,有防水及防尘设计的舵机;并且因应不同的负载需求,舵机的齿轮有塑胶及金属之区分,金属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。较高级的舵机会装置滚珠轴承,使得转动时能更轻快精准。滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。目前新推出的 FET 舵机,主要是采用 FET(Field Effect Transistor)场效电晶体。FET 具有内阻低的优点,因此电流损耗比一般电晶体少。
舵机

---------------------------------------------------------------------------------------------------

模型舵机的技术规格

当今使用的舵机有模拟舵机和数字舵机之分(具体差别见第节),不过数字舵机还是相对较少。下面的技术规格同时适用与两种舵机。

舵机的规格主要有几个方面:转速、转矩、电压、尺寸、重量、材料等。我们在做舵机的选型时要对以上几个方面进行综合考虑。

  • 转速


转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在0.11/60°~0.21S/60°之间。

舵机

  • 转矩


舵机扭矩的单位是KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水平距离1CM处,舵机能够带动的物体重量。

舵机

  • 电压


厂商提供的速度、转矩数据和测试电压有关,在4.8V和6V两种测试电压下这两个参数有比较大的差别。如Futaba S-9001 在 4.8V 时扭力为 3.9kg、速度为 0.22 秒,在 6.0V 时扭力为 5.2kg、速度为 0.18 秒。若无特别注明,JR 的舵机都是以 4.8V 为测试电压,Futaba则是以 6.0V 作为测试电压。

舵机的工作电压对性能有重大的影响,舵机推荐的电压一般都是4.8V或6V。当然,有的舵机可以在7V以上工作,比如12V的舵机也不少。较高的电压可以提高电机的速度和扭矩。选择舵机还需要看我们的控制卡所能提供的电压。

  • 尺寸、重量和材质


舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。

塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。

用户一般都对金属制的物品比较信赖,齿轮箱期望选择全金属的,舵盘期望选择金属舵
盘。但需要注意的是,金属齿轮箱在长时间过载下也不会损毁,最后确是电机过热损坏或外壳变形,而这样的损坏是致命的,不可修复的。塑料出轴的舵机如果使用金属舵盘是很危险的,舵盘和舵机轴在相互扭转过程中,金属舵盘不会磨损,舵机轴会在一段时间后变得光秃,导致舵机完全不能使用。

综上,选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。
--------------------------------------------------------------------------

模拟舵机及其控制原理


舵机是一个微型的伺服控制系统,具体的控制原理可以用下图表示:

舵机

    工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

    模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。如下图所示:

舵机

      需要解释的是舵机原来主要用在飞机、汽车、船只模型上,作为方向舵的调节和控制装置。所以,一般的转动范围是45°、60°或者90°,这时候脉冲宽度一般只有1ms-2ms之间。而后舵机开始在机器人上得到大幅度的运用,转动的角度也在根据机器人关节的需要增加到-90度至90度之间,脉冲宽度也随之有了变化。


 



------------------------------------------------------------------------------------------------------------

模型舵机故障的判断与修理


舵机一般故障判断:

  1)炸机后舵机电机狂转、舵盘摇臂不受控制、摇臂打滑------------------可以断定:齿轮扫齿了,换齿轮。

  2)炸机后舵机一致性锐减,现象是炸坏的舵机反应迟钝,发热严重,但是可以随着控的指令运行,但是舵量很小很慢-------------基本断定:舵机电机过流了,拆下电机后发现电机空载电流很大(>150MA),失去完好的性能(完好电机空载电流≤60-90MA),换舵机电机。

  3)炸机后舵机打舵后无任何反应---------------基本确定舵机电子回路断路、接触不良或舵机的电机、电路板的驱动部分烧毁导致的,先检查线路,包括插头,电机引线和舵机引线是否有断路现象,如果没有的话,就进行逐一排除,先将电机卸下测试空载电流,如果空载电流小于90MA,则说明电机是好的,那问题绝对是舵机驱动烧坏了,9-13克微型舵机电路板上面就有2个或四个小贴片三极管,换掉就可以了,有2个三极管的那肯定是用Y2或IY直接代换,也就是SS8550,如果是有四个三极管的H桥电路,则直接用2个Y1(SS8050)和2个(SS8550)直接代换,65MG的UYR 用Y 1(SS8050 IC=1.5A); UXR------用Y2(SS8550,IC=1.5A)直接代换。

  4)舵机故障是摇臂只能一边转动,另外一边不动的话-----------判断:舵机电机是好的,主要检查驱动部分,有可能烧了一边的驱动三极管,按照(3)维修即可。

  5)维修好舵机后通电,发现舵机向一个方向转动后就卡住不动了,舵机吱吱地响--------------说明舵机电机的正负极或电位器的端线接错了,电机的两个接线倒个方向就可以了。

  6)崭新的舵机买回来后,通电发现舵机狂抖,但用一下控的摇臂后,舵机一切正常----------说明舵机在出厂的时候装配不当或齿轮精度不够,这个故障一般发生在金属舵机上面,如果不想退货或者更换的话,自行解决的方法:卸下舵机后盖,将舵机电机与舵机减速齿轮分离后,在齿轮之间挤点牙膏,上好舵机齿轮顶盖,上好减速箱螺丝后,安上舵机摇臂,用手反复旋转摇臂碾磨金属舵机齿轮,直至齿轮运转顺滑、齿轮摩擦噪音减小后,将舵机齿轮卸下汽油清洗后,装齿轮上硅油组装好舵机,即可解决舵机故障。

  7)有一种故障舵机表现很古怪:摇动控的遥感,舵机有正常的反应,但是固定控的遥感某一位置后,故障舵机摇臂还在慢慢的运行,或者摇臂动作拖泥带水,并来回动作------------------经过多次维修后发现问题所在:应该紧密卡在舵机末级齿轮中电位器的金属转柄,与舵机摇臂大齿轮(末级)结合不紧,甚至发生打滑现象,导致舵机无法正确寻找控发出的位置指令,反馈不准,不停寻找导致的,解决了电位器与摇臂齿轮的紧密结合后,故障可以排除。按照改方法检修后故障仍旧存在的话,也有可能是舵机电机的问题或电位器的问题,需要综合分析逐一排查!


  8)故障舵机不停的抖舵,排除无线电干扰,动控摇臂仍旧抖动的话----------电位器老化,换之,或直接报废掉,当配件!
--------------------------------------------------------------------------------------------------

数字舵机和模拟舵机的区别


数字舵机(Digital Servo)和模拟舵机(Analog Servo)在基本的机械结构方面是完全一样的,主要由马达、减速齿轮、控制电路等组成,而数字舵机和模拟舵机的最大区别则体现在控制电路上,数字舵机的控制电路比模拟舵机的多了微处理器和晶振。不要小看这一点改变,它对提高舵机的性能有着决定性的响。
 

   数字舵机在以下两点与模拟舵机不同:

 
   1.处理接收机的输入信号的方式;

 
   2.控制舵机马达初始电流的方式,减少无反应区(对小量信号无反应的控制区域),增加分辨率以及产生更大的固定力量。
 
 
 
   模拟舵机在空载时,没有动力被传到舵机马达。当有信号输入使舵机移动,或者舵机的摇臂受到外力的时候,舵机会作出反应,向舵机马达传动动力(电压)。这种动力实际上每秒传递50次,被调制成开/关脉冲的最大电压,并产生小段小段的动力。当加大每一个脉冲的宽度的时候,如电子变速器的效能就会出现,直到最大的动力/电压被传送到马达,马达转动使舵机摇臂指到一个新的位置。然后,当舵机电位器告诉电子部分它已经到达指定的位置,那么动力脉冲就会减小脉冲宽度,并使马达减速。直到没有任何动力输入,马达完全停止。

 
   模拟舵机的“缺点”是:假设一个短促的动力脉冲,紧接着很长的停顿,并不能给马达施加多少激励,使其转动。这意味着如果有一个比较小的控制动作,舵机就会发送很小的初始脉冲到马达,这是非常低效率的。这也是为什么模拟舵机有“无反应区”的存在。比如说,舵机对于发射机的细小动作,反应非常迟钝,或者根本就没有反应。

 
  
 相对于传统模拟舵机,数字舵机的两个优势是:1.因为微处理器的关系,数字舵机可以在将动力脉冲发送到舵机马达之前,对输入的信号根据设定的参数进行处理。这意味着动力脉冲的宽度,就是说激励马达的动力,可以根据微处理器的程序运算而调整,以适应不同的功能要求,并优化舵机的性能。2.数字舵机以高得多的频率向马达发送动力脉冲。就是说,相对与传统的50脉冲/秒,现在是300脉冲/秒。虽然,以为频率高的关系,每个动力脉冲的宽度被减小了,但马达在同一时间里收到更多的激励信号,并转动得更快。这也意味着不仅仅舵机马达以更高的频率响应发射机的信号,而且“无反应区”变小;反应变得更快;加速和减速时也更迅速、更柔和;数字舵机提供更高的精度和更好的固定力量

 

阅读(32657) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~