Chinaunix首页 | 论坛 | 博客
  • 博客访问: 32905
  • 博文数量: 12
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 30
  • 用 户 组: 普通用户
  • 注册时间: 2015-01-24 10:07
个人简介

追求嵌入式技术

文章分类
文章存档

2015年(12)

我的朋友

分类: C/C++

2015-08-14 22:25:50

原文地址:stm32之DMA彻底研究 作者:number007cool

在做实验之前,首先必须明白什么是DMA,DMA的作用又体现在哪里。
DMA,即直接内存存储,在一些数据的传输中,采用DMA方式,从而将CPU解放出来。让CPU有足够的时间处理其他的事情。
stm32使用DMA的相关操作:
1、DMA的配置
要配置的有DMA传输通道选择,传输的成员和方向、普通模式还是循环模式等等。
void DMA_Configuration(void)
{
    DMA_InitTypeDef DMA_InitStructure;
    //DMA设置:
    //设置DMA源:内存地址&串口数据寄存器地址
    //方向:内存-->外设
    //每次传输位:8bit
    //传输大小DMA_BufferSize=SENDBUFF_SIZE
    //地址自增模式:外设地址不增,内存地址自增1
    //DMA模式:一次传输,非循环
    //优先级:中
    DMA_DeInit(DMA1_Channel4);//串口1的DMA传输通道是通道4
    DMA_InitStructure.DMA_PeripheralBaseAddr = USART1_DR_Base;
    DMA_InitStructure.DMA_MemoryBaseAddr = (u32)SendBuff;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//外设作为DMA的目的端
    DMA_InitStructure.DMA_BufferSize = SENDBUFF_SIZE;//传输大小
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不增加
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//内存地址自增1
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    //DMA_Mode_Normal(只传送一次), DMA_Mode_Circular (不停地传送)
    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//(DMA传送优先级为中等)
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(DMA1_Channel4, &DMA_InitStructure);
}
注:
1、传输通道:通过查表,串口1的发送对应的是DMA的通道4,所以此处选择通道4.
2、DMA传输方式:
(1) DMA_Mode_Normal,正常模式,当一次DMA数据传输完后,停止DMA传送,对于上例而言,就是DMA_PeripheralDataSize_Byte个字节的传送完成后,就停止传送。
(2) DMA_Mode_Circular
循环模式,当传输完一次后,重新接着传送,永不停息。
2、外设的DMA方式设置
将串口1设置成DMA模式:
USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
3、待传输数据的定义和初始化
#define SENDBUFF_SIZE   10240
vu8 SendBuff[SENDBUFF_SIZE];
    for(i=0;i    {
        SendBuff[i] = i%10+'0';
    }
4、开始DMA传输(使能对应的DMA通道)
DMA_Cmd(DMA1_Channel4, ENABLE);
5、DMA传输的完成
 while(DMA_GetFlagStatus(DMA1_FLAG_TC4) == RESET)
 {
       LED_1_REV;      //LED翻转
       Delay();        //浪费时间
 }
当传输完成后,就会跳出上面的死循环。
 
下面是九九的一个例程,测试过,可以运行!
/******************************************************************************
* 本文件实现串口发送功能(通过重构putchar函数,调用printf;或者USART_SendData()
* 这里是一个用串口实现大量数据传输的例子,使用了DMA模块进行内存到USART的传输
* 每当USART的发送缓冲区空时,USART模块产生一个DMA事件,
* 此时DMA模块响应该事件,自动从预先定义好的发送缓冲区中拿出下一个字节送给USART
* 整个过程无需用户程序干预,用户只需启动DMA传输传输即可
* 在仿真器调试时,可以在数据传输过程中暂停运行,此时DMA模块并没有停止
* 串口依然发送,表明DMA传输是一个独立的过程。
* 同时开启接收中断,在串口中断中将数据存入缓冲区,在main主循环中处理
* 作者:jjldc(九九)
* 代码硬件基于万利199元的EK-STM32F开发板,CPU=STM32F103VBT6
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_lib.h"
#include "stdio.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define USART1_DR_Base  0x40013804
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
#define SENDBUFF_SIZE   10240
vu8 SendBuff[SENDBUFF_SIZE];
vu8 RecvBuff[10];
vu8 recv_ptr;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void DMA_Configuration(void);
void USART1_Configuration(void);
int fputc(int ch, FILE *f);
void Delay(void);
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name  : main
* Description    : Main program.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
    u16 i;
#ifdef DEBUG
    debug();
#endif
    recv_ptr = 0;
   
    RCC_Configuration();
    GPIO_Configuration();
    NVIC_Configuration();
    DMA_Configuration();
    USART1_Configuration();
   
    printf("\r\nSystem Start...\r\n");
    printf("Initialling SendBuff... \r\n");
    for(i=0;i    {
        SendBuff[i] = i%10+'0';
    }
    printf("Initial success!\r\nWaiting for transmission...\r\n");
    //发送去数据已经准备好,按下按键即开始传输
    while(GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_3));
   
    printf("Start DMA transmission!\r\n");
   
    //这里是开始DMA传输前的一些准备工作,将USART1模块设置成DMA方式工作
    USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
    //开始一次DMA传输!
    DMA_Cmd(DMA1_Channel4, ENABLE);
   
    //等待DMA传输完成,此时我们来做另外一些事,点灯
    //实际应用中,传输数据期间,可以执行另外的任务
    while(DMA_GetFlagStatus(DMA1_FLAG_TC4) == RESET)
    {
//        LED_1_REV;      //LED翻转
        Delay();        //浪费时间
    }
    //DMA传输结束后,自动关闭了DMA通道,而无需手动关闭
    //下面的语句被注释
    //DMA_Cmd(DMA1_Channel4, DISABLE);
   
    printf("\r\nDMA transmission successful!\r\n");
   
    /* Infinite loop */
    while (1)
    {
    }
}
/*******************************************************************************
* Function Name  : 重定义系统putchar函数int fputc(int ch, FILE *f)
* Description    : 串口发一个字节
* Input          : int ch, FILE *f
* Output         :
* Return         : int ch
* 这个是使用printf的关键
*******************************************************************************/
int fputc(int ch, FILE *f)
{
    //USART_SendData(USART1, (u8) ch);
    USART1->DR = (u8) ch;
   
    /* Loop until the end of transmission */
    while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)
    {
    }
    return ch;
}
/*******************************************************************************
* Function Name  : Delay
* Description    : 延时函数
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void Delay(void)
{
    u32 i;
    for(i=0;i<0xF0000;i++);
    return;
}
/*******************************************************************************
* Function Name  : RCC_Configuration
* Description    : 系统时钟设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void RCC_Configuration(void)
{
    ErrorStatus HSEStartUpStatus;
    //使能外部晶振
    RCC_HSEConfig(RCC_HSE_ON);
    //等待外部晶振稳定
    HSEStartUpStatus = RCC_WaitForHSEStartUp();
    //如果外部晶振启动成功,则进行下一步操作
    if(HSEStartUpStatus==SUCCESS)
    {
        //设置HCLK(AHB时钟)=SYSCLK
        RCC_HCLKConfig(RCC_SYSCLK_Div1);
        //PCLK1(APB1) = HCLK/2
        RCC_PCLK1Config(RCC_HCLK_Div2);
        //PCLK2(APB2) = HCLK
        RCC_PCLK2Config(RCC_HCLK_Div1);
        //FLASH时序控制
        //推荐值:SYSCLK = 0~24MHz   Latency=0
        //        SYSCLK = 24~48MHz  Latency=1
        //        SYSCLK = 48~72MHz  Latency=2
        FLASH_SetLatency(FLASH_Latency_2);
        //开启FLASH预取指功能
        FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
        //PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHz
        RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
        //启动PLL
        RCC_PLLCmd(ENABLE);
        //等待PLL稳定
        while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
        //系统时钟SYSCLK来自PLL输出
        RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
        //切换时钟后等待系统时钟稳定
        while(RCC_GetSYSCLKSource()!=0x08);

        /*
        //设置系统SYSCLK时钟为HSE输入
        RCC_SYSCLKConfig(RCC_SYSCLKSource_HSE);
        //等待时钟切换成功
        while(RCC_GetSYSCLKSource() != 0x04);
        */
    }
    //下面是给各模块开启时钟
    //启动GPIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \
                           RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\
                           ENABLE);
    //启动AFIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
    //启动USART1
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
    //启动DMA时钟
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
   
}
 
/*******************************************************************************
* Function Name  : GPIO_Configuration
* Description    : GPIO设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void GPIO_Configuration(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    //PC口4567脚设置GPIO输出,推挽 2M
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOC, &GPIO_InitStructure);
    //KEY2 KEY3 JOYKEY
    //位于PD口的3 4 11-15脚,使能设置为输入
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_11 | GPIO_Pin_12 |\
        GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOD, &GPIO_InitStructure);
    //USART1_TX
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
   
    //USART1_RX
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
}
 
/*******************************************************************************
* Function Name  : NVIC_Configuration
* Description    : NVIC设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void NVIC_Configuration(void)
{
    NVIC_InitTypeDef NVIC_InitStructure;
#ifdef  VECT_TAB_RAM
    // Set the Vector Table base location at 0x20000000
    NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else  /* VECT_TAB_FLASH  */
    // Set the Vector Table base location at 0x08000000
    NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
    //设置NVIC优先级分组为Group2:0-3抢占式优先级,0-3的响应式优先级
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
    //串口接收中断打开   
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQChannel;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);
}

/*******************************************************************************
* Function Name  : USART1_Configuration
* Description    : NUSART1设置
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void USART1_Configuration(void)
{
    USART_InitTypeDef USART_InitStructure;
   
    USART_InitStructure.USART_BaudRate = 9600;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;
    USART_InitStructure.USART_Parity = USART_Parity_No;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
    USART_Init(USART1, &USART_InitStructure);
   
    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
   
    USART_Cmd(USART1, ENABLE);
}

void DMA_Configuration(void)
{
    DMA_InitTypeDef DMA_InitStructure;
    //DMA设置:
    //设置DMA源:内存地址&串口数据寄存器地址
    //方向:内存-->外设
    //每次传输位:8bit
    //传输大小DMA_BufferSize=SENDBUFF_SIZE
    //地址自增模式:外设地址不增,内存地址自增1
    //DMA模式:一次传输,非循环
    //优先级:中
    DMA_DeInit(DMA1_Channel4);//串口1的DMA传输通道是通道4
    DMA_InitStructure.DMA_PeripheralBaseAddr = USART1_DR_Base;
    DMA_InitStructure.DMA_MemoryBaseAddr = (u32)SendBuff;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//外设作为DMA的目的端
    DMA_InitStructure.DMA_BufferSize = SENDBUFF_SIZE;//传输大小
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不增加
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//内存地址自增1
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//DMA_Mode_Normal(只传送一次), DMA_Mode_Circular (不停地传送)
    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//(DMA传送优先级为中等)
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(DMA1_Channel4, &DMA_InitStructure);
}
 
需要说明的是,由于DMA传输不需要CPU的参与。
所以在调试的时候会发现,在我们单步停止的时候,串口依然不停地向外发送数据。
阅读(1032) | 评论(0) | 转发(0) |
0

上一篇:认识u-boot七、U-boot源码start.S详细分析

下一篇:没有了

给主人留下些什么吧!~~