Chinaunix首页 | 论坛 | 博客
  • 博客访问: 118726
  • 博文数量: 27
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 85
  • 用 户 组: 普通用户
  • 注册时间: 2014-08-30 13:49
文章分类
文章存档

2017年(3)

2016年(1)

2015年(3)

2014年(20)

我的朋友

分类: LINUX

2015-08-06 11:03:28

,分析平衡二叉查找树有什么意义?

   平衡二叉查找树是对二叉查找树的改进,那二叉查找树哪些地方是不尽人意的呢?

在分析二叉查找树的平均查找长度时,会发现,二叉查找树的平均查找长度与二叉查找树

的形态有关系,最坏的情况是退化为链表,查找变为线性查找,平均查找长度为(n 1)/2.

好的情况就是树的形态与折半查找的判断树形式。平均查找长度为logN


平衡二叉树就是为了保证树的形态向“树”的方向走。避免了二叉查找树退化为链表的可能。

从而提高了查找效率。其实平衡二叉查找树与二叉查找树的区别并不是很大,平衡树在“改变”

树的时候会维护树的形态,“改变”无非就两种,插入节点和删除节点,而树的查找只“读”

了树,并没改变,所以树的查找,平衡树和查找树是一样的。

例如:


现在我要使用24,12,53,28,45,90创建查找树,如果创建的二叉查找树(如左图),

则平均查找长度:(1 2 2 3 4 3)/6 = 15/6 如果创建的是平衡二叉查找树(如右图)

则平均查找长度:(2 3 2 3 1 3)/6 = 14/6. 平衡二叉树的查找效率要高,

这个例子是借用上次使用的,可能代表性不是强。

----------------------------------------------------------------


二,平衡二叉查找树相关的重要概念。


1,什么是平衡二叉查找树?



平衡二叉查找树又称为平衡二叉排序树,又称为AVL树,是二叉查找树的改进
     定义(满足如下三个条件)
           (1),是二叉查找树。
           (2),左子树与右子树的深度之差的绝对值小于或等于1.
           (3),左右子树也是平衡二叉查找树。 


2,什么是平衡因子?

平衡二叉查找树的每个结点都要描述一个属性,就是平衡因子,
      它表示结点的左子树深度与右子树深度之差。 

该概念的引入也是为了更好地描述什么是平衡二叉查找树。有了这概念后。

我们可以重新对二叉查找树下个定义。

如果某个二叉查找树的所有节点的平衡因子只有-1,0,1则说明其实平衡的,

否则说明是不平衡的。
-------------------------------------------------------------------
三,平衡二叉查找树是如何创建和插入的?如何保证插入一个新节点后树仍然是

一棵平衡二叉查找树?


先介绍几个特殊的节点。

插入一个新的节点,只有该节点的祖先节点的平衡因子会变化,其他节点的

平衡因子都不会变化。


如上图,插入15这个节点后,平衡因子变化的只有20,25,40。都是15的“祖先节点”。



A节点:为插入点最底层“祖先节点”最可能的失衡点。比如插入的节点是15,故插入的位置是节点20的左孩子,这从20这个节点开始遍历祖先节点,取最近的的最可能失衡点,
这儿就是40这个节点。如果没有找到,说明插入这个节点不可能破坏平衡
B节点就是该祖先节点一条线中A节点的下一个。

这两个特殊的点很重要,因为后面的失衡类型就是根据这两个点的平衡因子来判断的。









插入节点很简单,主要就是插入节点后有可能破坏平衡,那就必须将非平衡的树调整为平衡树。


现在将非平衡的情况分为四种,每种情况都有自己的调整方法。


1LL型。(左边重,需往右边转)


LL型的判断依据就是:A节点平衡因子为2B节点的平衡因子为1.

: A->bf = 2, B->bf = 1.

如果失衡类型是LL型,这调整算法如下:







B点为轴,将A节点做顺时针旋转,然后将B的右子树作为A的左子树。

算法的代码实现如下:(可结合上面的图看)


  1. case LL:
  2.             B = A->lchild;//该类型B节点所在的位置
  3.             A->lchild = B->rchild;//将B节点的右子树交给A,作为A的左子树
  4.             B->rchild = A;//把A作为B的右子树。
  5.             A->bf = B->bf = 0;//更新A,B节点的平衡因子的值。
  6.             if (father_A == NULL) *root = B;//如果A是根,则现在把B节点设置为根节点。
  7.             else if (A == father_A->lchild) father_A->lchild = B;//如果原来A是father_A的
  8. //左孩子,则现在把B,作为father_A的左孩子。否则,作为father_A的右孩子,就是用B的取代A原来的位置。
  9.             else    father_A->rchild = B;
  10.             break;
该算法的过程实现起来并不难,主要还是有人家的理论在这儿放着。详细的过程看代码注释。

2RR型。与LL型是对称的。(右边重,需往左边转)

RR型的判断依据就是:A节点平衡因子为-2B节点的平衡因子为-1.

: A->bf = -2, B->bf = -1.

如果失衡类型是RR型,这调整算法如下:


该类型的调整和LL型调整差不多。以B节点为轴,将A节点作逆时针旋转,然后,把B

左子树给A,作为A的右子树。

算法的代码实现如下:


  1. case RR:
  2.     B = A->rchild;//该类型B节点所在的位置
  3.     A->rchild = B->lchild;//把B的左子树给A,充当A的右子树。
  4.     B->lchild = A;//将A充当B的左子树,完成了逆时针旋转。
  5.     A->bf = B->bf = 0;//重新设置平衡因子。
  6.     if (father_A == NULL) *root = B;//看原来A在整个树中的位置,现在将B取代A的位置
  7.     else if (A == father_A->lchild) father_A->lchild = B;
  8.     else father_A->rchild = B;
  9.     break;
该类型和LL型是对称的,只要理解了其中一个,另外一个很好理解。

3LR型。(左边,右边都重,都需要转)


该类型又引入了一个特殊节点C。该节点很好判断,和判断B节点一样,插入节点的

“祖先节点”那一线上,A的下一个是BB的下一个就是C节点。


LR型的判断依据就是:A节点平衡因子为2B节点的平衡因子为-1.

: A->bf = 2, B->bf = -1.

如果失衡类型是LR型,这调整算法如下:

算法的实现代码分析:


  1. case LR:
  2.             B = A->lchild;//该类型B节点的位置
  3.             C = B->rchild;//该类型C节点的位置
  4.             B->rchild = C->lchild;//C节点的左子树交给B,作为B的右子树。
  5.             A->lchild = C->rchild;//C节点的右子树交给A,作为A的左子树。
  6.             C->lchild = B;//B作为C的左子树
  7.             C->rchild = A;//A作为A的右子树
  8.             if (s->key < C->key) {//根据插入节点与C节点的位置来更新平衡因子的值
  9.                 A->bf = -1;B->bf = 0;C->bf = 0;
  10.             } else if (s->key > C->key) {
  11.                 A->bf =0;B->bf = 1;C->bf = 0;
  12.             } else {
  13.                 A->bf = 0;B->bf = 0;
  14.             }
  15.             if (father_A == NULL) *root = C;//用C节点来取代A节点的位置。
  16.             else if (A == father_A->lchild) father_A->lchild = C;
  17.             else father_A->rchild = C;
  18.             break;
该类型的调整算法见代码注释。

4RL型。(左边,右边都重,都需要转)
      这种类型和LR型是对称的,分析起来思路是一样的。故不再详细分析。

--------------------------------------------------------------------------------------
四,平衡树节点的删除,平衡树节点的删除和插入差不多,都有可能导致
平衡树的失衡,在删除节点后同样要找到A点和B点,然后判断是否有失衡,
如果失衡了,然后根据失衡的类型作出调整。调整的算法见上面的分析。

----------------------------------------------------------------------------------------
五,实例代码(完整代码)
 avl.c.rar   

----------------------------------------------------------------------------------------








阅读(1761) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~