博客是我工作的好帮手,遇到困难就来博客找资料
分类: 系统运维
2015-12-18 16:26:09
1、选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能, 我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用 VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是 BIGIN来定义整型字段。
另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。
对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。
2、使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。 例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询, 如下所示:
DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )
使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询 可以被更有效率的连接(JOIN).. 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:
SELECT * FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )
如果使用连接(JOIN).. 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:
SELECT * FROM customerinfo LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo. CustomerID WHERE salesinfo.CustomerID IS NULL
连接(JOIN).. 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。
3、使用联合(UNION)来代替手动创建的临时表
MySQL 从 4.0 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。
SELECT Name, Phone FROM client UNION SELECT Name, BirthDate FROM author
UNION SELECT Name, Supplier FROM product
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条 或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整 个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外 状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块 中每条语句都操作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL操作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。
BEGIN;
INSERT INTO salesinfo SET CustomerID=14;
UPDATE inventory SET Quantity=11
WHERE item='book';
COMMIT;
事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的操作不被其它的用户所干扰。
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户
来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。
其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。
LOCK TABLE inventory WRITE
SELECT Quantity FROM inventory
WHEREItem='book';
...
UPDATE inventory SET Quantity=11
WHEREItem='book';
UNLOCK TABLES
这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的操作。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。例如,外键可以保证每一条销售记录都指向某一个存在的客 户。在这里,外键可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一条没有合法CustomerID的记录都不会被更新或插入到 salesinfo中。
CREATE TABLE customerinfo
(
CustomerID INT NOT NULL ,
PRIMARY KEY ( CustomerID )
) TYPE = INNODB;
CREATE TABLE salesinfo
(
SalesID INT NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY(CustomerID, SalesID),
FOREIGN KEY (CustomerID) REFERENCES customerinfo
(CustomerID) ON DELETECASCADE
) TYPE = INNODB;
注意例子中的参数“ON DELETE CASCADE”。该参数保证当 customerinfo 表中的一条客户记录被删除的时候,salesinfo 表中所有与该客户相关的记录也会被自动删除。如果要在 MySQL 中使用外键,一定要记住在创建表的时候将表的类型定义为事务安全表 InnoDB类型。该类型不是 MySQL 表的默认类型。定义的方法是在 CREATE TABLE 语句中加上 TYPE=INNODB。如例中所示。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(), MIN()和ORDERBY这些命令的时候,性能提高更为明显。那该对哪些字段建立索引呢?一般说来,索引应建立在那些将用于JOIN, WHERE判断和ORDER BY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。对于一个ENUM类型的字段来说,出现大量重复值是很有可能的情况,例如 customerinfo中的“province”.. 字段,在这样的字段上建立索引将不会有什么帮助;相反,还有可能降低数据库的性能。我们在创建表的时候可以同时创建合适的索引,也可以使用ALTER TABLE或CREATE INDEX在以后创建索引。此外,MySQL
从版本3.23.23开始支持全文索引和搜索。全文索引在MySQL 中是一个FULLTEXT类型索引,但仅能用于MyISAM 类型的表。对于一个大的数据库,将数据装载到一个没有FULLTEXT索引的表中,然后再使用ALTER TABLE或CREATE INDEX创建索引,将是非常快的。但如果将数据装载到一个已经有FULLTEXT索引的表中,执行过程将会非常慢。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。下面是应该注意的几个方面。首先,最好是在 相同类型的字段间进行比较的操作。在MySQL 3.23版之前,这甚至是一个必须的条件。例如不能将一个建有索引的INT字段和BIGINT字段进行比较;但是作为特殊的情况,在CHAR类型的字段和 VARCHAR类型字段的字段大小相同的时候,可以将它们进行比较。其次,在建有索引的字段上尽量不要使用函数进行操作。
例如,在一个DATE类型的字段上使用YEAE()函数时,将会使索引不能发挥应有的作用。所以,下面的两个查询虽然返回的结果一样,但后者要比前者快得多。
SELECT * FROM order WHERE YEAR(OrderDate)<2001;
SELECT * FROM order WHERE OrderDate<"2001-01-01";
同样的情形也会发生在对数值型字段进行计算的时候:
SELECT * FROM inventory WHERE Amount/7<24;
SELECT * FROM inventory WHERE Amount<24*7;
上面的两个查询也是返回相同的结果,但后面的查询将比前面的一个快很多。
第三,在搜索字符型字段时,我们有时会使用 LIKE 关键字和通配符,这种做法虽然简单,但却也是以牺牲系统性能为代价的。例如下面的查询将会比较表中的每一条记录。
SELECT * FROM books
WHERE name like "MySQL%"
但是如果换用下面的查询,返回的结果一样,但速度就要快上很多:
SELECT * FROM books
WHERE name>="MySQL"and name<"MySQM"
最后,应该注意避免在查询中让MySQL进行自动类型转换,因为转换过程也会使索引变得不起作用。
前言
MySQL是最流行的关系型数据库管理系统,在WEB应用方面MySQL是最好的RDBMS应用软件之一。它分为社区版和商业版,由于体积小、速度快、总体拥有成本低,尤其是开发源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。
1、为查询优化你的查询
大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。
这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:
// 查询缓存不开启 $r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()");
// 开启查询缓存 $today = date("Y-m-d"); $r = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'");
上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,
因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。
2、EXPLAIN 你的SELECT查询
使用EXPLAIN关键字可以让你知道MySQL是如何处理你的SQL语句的。
有表关联的查询,如下列:
select username, group_name from users u joins groups g on (u.group_id = g.id)
发现查询缓慢,然后在group_id字段上增加索引,则会加快查询
3、当只要一行数据时使用LIMIT 1
当你查询表的有些时候,你已经知道结果只会有一条结果,单因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。
在这种情况下,加上LIMIT 1 可以增加性能。这样一样, MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查找下一条符合记录的数据。
下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)
// 没有效率的: $r = mysql_query("SELECT * FROM user WHERE country = 'China'"); if (mysql_num_rows($r) > 0) { // ... }
// 有效率的: $r = mysql_query("SELECT 1 FROM user WHERE country = 'China' LIMIT 1"); if (mysql_num_rows($r) > 0) { // ... }
4、为搜索字段建索引
索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。
5、在Join表的时候使用相当类型的列,并将其索引
如果你的应用程序有很多JOIN查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。
而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把DECIMAL字段和一个INT字段JOIN在一起,MYSQL就无法使用他们的索引。对于那些STRING类型,还需要有相同的字符集才行(两个表的字符集有可能不一样)
6、千万不要ORDER BY RAND()
7、避免SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。
所以,你应该养成一个需要什么就取什么的好的习惯。
// 不推荐 $r = mysql_query("SELECT * FROM user WHERE user_id = 1"); $d = mysql_fetch_assoc($r); echo "Welcome {$d['username']}";
// 推荐 $r = mysql_query("SELECT username FROM user WHERE user_id = 1"); $d = mysql_fetch_assoc($r); echo "Welcome {$d['username']}";
8、永远为两张表设置一个ID
我们应该为数据库里的每张表都设置一个ID作为其主键,而最好的是一个INT型(推荐使用UNSIGNED),并设置上自动增长的AUTO INCREMENT标志。
就算是你 users 表有一个主键叫 “email”的字段,你也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。 而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……
9、使用 ENUM 而不是 VARCHAR ?
ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。
如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。
10、从 PROCEDURE ANALYSE() 取得建议 ?
PROCEDURE ANALYSE() 会让 MySQL 帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础的。
例如,如果你创建了一个 INT 字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成 MEDIUMINT 。或是你使用了一个 VARCHAR 字段,因为数据不多,你可能会得到一个让你把它改成 ENUM 的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。
11、尽可能的使用 NOT NULL
除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。
首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)
不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。
下面摘自MySQL自己的文档
“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”
12、把IP地址存成 UNSIGNED INT
很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。
我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形
13、固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。
固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。
并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。#p#副标题#e#
14、垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过一张表有100多个字段,很恐怖)
示例一:在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢? 这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有好的性能。
示例二: 你有一个叫 “last_login” 的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户 ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。
另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。
15、拆分大的 DELETE 或 INSERT 语句
如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上挂了。
所以,如果你有一个大的处理,你定你一定把其拆分,使用 LIMIT 条件是一个好的方法。下面是一个示例:
while (1) { //每次只做1000条 mysql_query("DELETE FROM logs WHERE log_date <= '2009-11-01' LIMIT 1000"); if (mysql_affected_rows() == 0) { // 没得可删了,退出! break; } // 每次都要休息一会儿 usleep(50000); }
16、 越小的列会越快
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。
参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。
如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。
当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot的例子(2009年11月06日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。
17、选择一个正确的存储引擎
在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM?》讨论和这个事情。
MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。
InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。
18、小心“永久链接”
“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的 Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。
PHP手册:mysql_pconnect()
在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问题,文件句柄数,等等。
而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地考虑一下你的整个系统的架构。
19、当查询较慢的时候,可用Join来改写一下该查询来进行优化
mysql> select sql_no_cache * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151) ; Empty set (18.87 sec) mysql> select sql_no_cache a.* from guang_deal_outs a inner join guang_deals b on a.deal_id = b.id where b.id = 100017151; Empty set (0.01 sec)
原因
mysql> desc select sql_no_cache * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151) ;
+----+--------------------+-----------------+-------+---------------+---------+---------+-------+----------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-----------------+-------+---------------+--------- +---------+-------+----------+-------------+ | 1 | PRIMARY | guang_deal_outs | ALL | NULL | NULL | NULL | NULL | 18633779 | Using where | | 2 | DEPENDENT SUBQUERY | guang_deals | const | PRIMARY | PRIMARY | 4 | const | 1 | Using index | +----+--------------------+-----------------+-------+---------------+--------- +---------+-------+----------+-------------+ 2 rows in set (0.04 sec) mysql> desc select sql_no_cache a.* from guang_deal_outs a inner join guang_deals b on a.deal_id = b.id where b.id = 100017151; +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ | 1 | SIMPLE | b | const | PRIMARY | PRIMARY | 4 | const | 1 | Using index | | 1 | SIMPLE | a | ref | idx_guang_dlout_dlid | idx_guang_dlout_dlid | 4 | const | 1 | | +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ 2 rows in set (0.05 sec)
其实在 guang_deal_outs 在deal_id 上也是有索引的。 其实我想把子查询设置为
select * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151);
变成下面的样子
select * from guang_deal_outs where deal_id in (100017151);
但不幸的是,实际情况正好相反。MySQL试图让它和外面的表产生联系来“帮助”优化查询,它认为下面的exists形式更有效率
select * from guang_deal_outs where exists (select * from guang_deals where id = 100017151 and id = guang_deal_outs.deal_id);
这种in子查询的形式,在外部表(比如上面的guang_deals)数据量比较大的时候效率是很差的(如果对于较小的表,不会造成显著地影响)
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化:
单表优化
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:
字段
(1)尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED
(2)VARCHAR的长度只分配真正需要的空间
(3)使用枚举或整数代替字符串类型
(4)尽量使用TIMESTAMP而非DATETIME,
(5)单表不要有太多字段,建议在20以内
(6)避免使用NULL字段,很难查询优化且占用额外索引空间
(7)用整型来存IP
索引
索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDER BY命令上涉及的列建立索引,可根据 EXPLAIN 来查看是否用了索引还是全表扫描
应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描
值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段
字符字段只建前缀索引
字符字段最好不要做主键
不用外键,由程序保证约束
尽量不用UNIQUE,由程序保证约束
使用多列索引时主意顺序和查询条件保持一致,同时删除不必要的单列索引
查询SQL
可通过开启慢查询日志来找出较慢的SQL
不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边
sql语句尽可能简单:一条sql只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大sql可以堵死整个库
不用SELECT *
OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内
不用函数和触发器,在应用程序实现
避免%xxx式查询
少用JOIN
使用同类型进行比较,比如用'123'和'123'比,123和123比
尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
对于连续数值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5
列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大
引擎
目前广泛使用的是MyISAM和InnoDB两种引擎:
MyISAM
MyISAM引擎是MySQL 5.1及之前版本的默认引擎,它的特点是:
不支持行锁,读取时对需要读到的所有表加锁,写入时则对表加排它锁
不支持事务
不支持外键
不支持崩溃后的安全恢复
在表有读取查询的同时,支持往表中插入新纪录
支持BLOB和TEXT的前500个字符索引,支持全文索引
支持延迟更新索引,极大提升写入性能
对于不会进行修改的表,支持压缩表,极大减少磁盘空间占用
InnoDB
InnoDB在MySQL 5.5后成为默认索引,它的特点是:
支持行锁,采用MVCC来支持高并发
支持事务
支持外键
支持崩溃后的安全恢复
不支持全文索引
总体来讲,MyISAM 适 合 SELECT 密集型的表,而InnoDB 适 合 INSERT 和 UPDATE密集型的表
系统调优参数
可以使用下面几个工具来做基准测试:
sysbench:一个模块化,跨平台以及多线程的性能测试工具
iibench-mysql:基于 Java 的 MySQL/Percona/MariaDB 索引进行插入性能测试工具
tpcc-mysql:Percona开发的TPC-C测试工具
具体的调优参数内容较多,具体可参考官方文档,这里介绍一些比较重要的参数:
back_log:back_log值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中。也就是说,如果MySql的连接数据达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。可以从默认的50升至500
wait_timeout:数据库连接闲置时间,闲置连接会占用内存资源。可以从默认的8小时减到半小时
max_user_connection: 最大连接数,默认为0无上限,最好设一个合理上限
thread_concurrency:并发线程数,设为CPU核数的两倍
skip_name_resolve:禁止对外部连接进行DNS解析,消除DNS解析时间,但需要所有远程主机用IP访问
key_buffer_size:索引块的缓存大小,增加会提升索引处理速度,对MyISAM表性能影响最大。对于内存4G左右,可设为256M或384M,通过查询show status like 'key_read%',保证key_reads / key_read_requests在0.1%以下最好
innodb_buffer_pool_size:缓存数据块和索引块,对InnoDB表性能影响最大。通过查询show status like 'Innodb_buffer_pool_read%',保证 (Innodb_buffer_pool_read_requests – Innodb_buffer_pool_reads) / Innodb_buffer_pool_read_requests越高越好
innodb_additional_mem_pool_size:InnoDB存储引擎用来存放数据字典信息以及一些内部数据结构的内存空间大小,当数据库对象非常多的时候,适当调整该参数的大小以确保所有数据都能存放在内存中提高访问效率,当过小的时候,MySQL会记录Warning信息到数据库的错误日志中,这时就需要该调整这个参数大小
innodb_log_buffer_size:InnoDB存储引擎的事务日志所使用的缓冲区,一般来说不建议超过32MB
query_cache_size:缓存MySQL中的ResultSet,也就是一条SQL语句执行的结果集,所以仅仅只能针对select语句。当某个表的数据有任何任何变化,都会导致所有引用了该表的select语句在Query Cache中的缓存数据失效。所以,当我们的数据变化非常频繁的情况下,使用Query Cache可能会得不偿失。根据命中率(Qcache_hits/(Qcache_hits+Qcache_inserts)*100))进行调整,一般不建议太大,256MB可能已经差不多了,大型的配置型静态数据可适当调大.
可以通过命令show status like 'Qcache_%'查看目前系统Query catch使用大小
read_buffer_size:MySql读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySql会为它分配一段内存缓冲区。如果对表的顺序扫描请求非常频繁,可以通过增加该变量值以及内存缓冲区大小提高其性能
sort_buffer_size:MySql执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。如果不能,可以尝试增加sort_buffer_size变量的大小
read_rnd_buffer_size:MySql的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySql会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySql会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。
record_buffer:每个进行一个顺序扫描的线程为其扫描的每张表分配这个大小的一个缓冲区。如果你做很多顺序扫描,可能想要增加该值
thread_cache_size:保存当前没有与连接关联但是准备为后面新的连接服务的线程,可以快速响应连接的线程请求而无需创建新的
table_cache:类似于thread_cache_size,但用来缓存表文件,对InnoDB效果不大,主要用于MyISAM
升级硬件
Scale up,这个不多说了,根据MySQL是CPU密集型还是I/O密集型,通过提升CPU和内存、使用SSD,都能显著提升MySQL性能
读写分离
也是目前常用的优化,从库读主库写,一般不要采用双主或多主引入很多复杂性,尽量采用文中的其他方案来提高性能。同时目前很多拆分的解决方案同时也兼顾考虑了读写分离
缓存
缓存可以发生在这些层次:
MySQL内部:在系统调优参数介绍了相关设置
数据访问层:比如MyBatis针对SQL语句做缓存,而Hibernate可以精确到单个记录,这里缓存的对象主要是持久化对象Persistence Object
应用服务层:这里可以通过编程手段对缓存做到更精准的控制和更多的实现策略,这里缓存的对象是数据传输对象Data Transfer Object
Web层:针对web页面做缓存
浏览器客户端:用户端的缓存
可以根据实际情况在一个层次或多个层次结合加入缓存。这里重点介绍下服务层的缓存实现,目前主要有两种方式:
直写式(Write Through):在数据写入数据库后,同时更新缓存,维持数据库与缓存的一致性。这也是当前大多数应用缓存框架如Spring Cache的工作方式。这种实现非常简单,同步好,但效率一般。
回写式(Write Back):当有数据要写入数据库时,只会更新缓存,然后异步批量的将缓存数据同步到数据库上。这种实现比较复杂,需要较多的应用逻辑,同时可能会产生数据库与缓存的不同步,但效率非常高。
表分区
MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码
对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引
用户的SQL语句是需要针对分区表做优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,如下图5条记录落在两个分区上:
mysql> explain partitions select count(1) from user_partition where id in (1,2,3,4,5);
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
| 1 | SIMPLE | user_partition | p1,p4 | range | PRIMARY | PRIMARY | 8 | NULL | 5 | Using where; Using index |
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
1 row in set (0.00 sec)
分区的好处是:
可以让单表存储更多的数据
分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作
部分查询能够从查询条件确定只落在少数分区上,速度会很快
分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备
可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争
可以备份和恢复单个分区
分区的限制和缺点:
一个表最多只能有1024个分区
如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来
分区表无法使用外键约束
NULL值会使分区过滤无效
所有分区必须使用相同的存储引擎
分区的类型:
RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区
LIST分区:类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择
HASH分区:基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含MySQL中有效的、产生非负整数值的任何表达式
KEY分区:类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL服务器提供其自身的哈希函数。必须有一列或多列包含整数值
分区适合的场景有:
最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:
CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL
)
PARTITION BY RANGE( YEAR(joined) ) (
PARTITION p0 VALUES LESS THAN (1960),
PARTITION p1 VALUES LESS THAN (1970),
PARTITION p2 VALUES LESS THAN (1980),
PARTITION p3 VALUES LESS THAN (1990),
PARTITION p4 VALUES LESS THAN MAXVALUE
);
查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容的批量删除。
如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存
另外MySQL有一种早期的简单的分区实现 - 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代
垂直拆分
垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联
比如原始的用户表是:
垂直拆分后是:
垂直拆分的优点是:
可以使得行数据变小,一个数据块(Block)就能存放更多的数据,在查询时就会减少I/O次数(每次查询时读取的Block 就少)
可以达到最大化利用Cache的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起
数据维护简单
缺点是:
主键出现冗余,需要管理冗余列
会引起表连接JOIN操作(增加CPU开销)可以通过在业务服务器上进行join来减少数据库压力
依然存在单表数据量过大的问题(需要水平拆分)
事务处理复杂
水平拆分
概述
水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的MySQL表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表
库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决
前面垂直拆分的用户表如果进行水平拆分,结果是: