Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1844784
  • 博文数量: 636
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 3950
  • 用 户 组: 普通用户
  • 注册时间: 2014-08-06 21:58
个人简介

博客是我工作的好帮手,遇到困难就来博客找资料

文章分类

全部博文(636)

文章存档

2024年(5)

2022年(2)

2021年(4)

2020年(40)

2019年(4)

2018年(78)

2017年(213)

2016年(41)

2015年(183)

2014年(66)

我的朋友

分类: 系统运维

2015-02-14 18:31:07

元字符

. ^ $ * + ? {} [] () \ |

python  的正则表达式需要re 模块支持

定义一个字符串s,通过"r" 定义一个规则'abc' 通过findall 从提供的字符串中匹配

1
2
3
4
5
>>> import re
>>> s = 'abc'
>>> s = r'abc'
>>> re.findall(s,'abcdfdsajk')
['abc']

 

[ ]

常用来指定一个字符集: [abc],[a-z]

元字符在字符集中不起作用: [abc$]

例如,[akm$]将匹配字符"a", "b", "c", 或 "$" 中的任意一个

[^string] 

匹配指定字符串以外的字符,例如[^a],表示匹配“a”以外的所有字符

通过元字符“[string]”匹配

1
2
3
4
5
6
7
>>> st = 'top tip tap tsp tep'
>>> res = r'top'
>>> re.findall(res,st)
['top']
>>> res = r't[io]p'
>>> re.findall(res,st)
['top', 'tip']

 

[^string]匹配不包含“io” 的字符串

1
2
3
>>> res = r't[^io]p'
>>> re.findall(res,st)
['tap', 'tsp', 'tep']

^  匹配行首 

$  匹配行尾

1
2
3
4
5
6
7
8
9
10
>>> s = "hello world,hello boy"
>>> r = r"hello"
>>> re.findall(r,s)
['hello', 'hello']
>>> r = r"^hello"
>>> re.findall(r,s)
['hello']
>>> r = r"boy$"
>>> re.findall(r,s)
['boy']

.  匹配换行符以外的所有字符

\  脱义符

\d  匹配任何十进制数,相当于[0-9]

\D 匹配任何非数字字符,相当于[^0-9]

\s  匹配任何空白字符,相当于[\t\n\r\f\v]

\S  匹配任何非空白字符,相当于[^\t\n\r\f\v]

\w  匹配任何字母数字字符,相当于[a-zA-Z0-9]

\W 匹配任何非字母数字字符,相当于[^a-zA-Z0-9]

\\   匹配"\"

*  匹配指定字符0次或多次,等同于{0,}

+ 匹配指定字符1次或多次,等同于{1,}

? 匹配1次或0次,等同于{0,1}

{n,m} 匹配大于等于n,小于等于m次的字符串

{m,} 匹配m次以上的字符串

例子:匹配电话号码

1
2
3
4
>>> import re
>>> r1 = r"\d{3,4}-?\d{8}"
>>> re.findall(r1,'020-88776655')
['020-88776655']

() 分组

例子:匹配邮箱

1
2
3
4
5
6
7
>>> email = r'\w{3}@\w+(\.com|\.net)'
>>> re.match(email,'abc@qq.com')
<_sre.SRE_Match object at 0x7f81fea30828>
>>> re.match(email,'bbb@163.net')
<_sre.SRE_Match object at 0x7f81fea470a8>
>>> re.match(email,'ccc@redhat.org')
>>>

编译正则表达式

正则表达式被编译成 `RegexObject` 实例,可以为不同的操作提供方法,如模式匹配搜索或字符串替换。

re 模块提供了一个正则表达式引擎的接口,可以将REstring 编译成对象并用它们来进行匹配,例如:

1
2
3
4
5
6
7
>>> import re
>>> r1 = r"\d{3,4}-?\d{8}"
>>> p_tel = re.compile(r1)
>>> p_tel
<_sre.SRE_Pattern object at 0x7f81fead6ab0>
>>> p_tel.findall('020-88776655')
['020-88776655']

数量词的贪婪模式与非贪婪模式

       正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*?",将找到"a"。

       像 * 这样地重复是“贪婪的”;当重复一个 RE 时,匹配引擎会试着重复尽可能多的次数。如果模式的后面部分没有被匹配,匹配引擎将退回并再次尝试更小的重复。

不贪婪的限定符 *?、+?、?? 或 {m,n}?

贪婪限定符    .* 

函数

match()    决定RE是否在字符串刚开始的位置匹配

search()    扫描字符串,找到这个RE匹配的位置

findall()    找到RE匹配的所有子串,并把它们作为一个列表返回

finditer()    找到RE匹配的所有子串,并把它们作为一个迭代器返回

如果没有匹配到,match()和search() 将返回None。匹配到,则返回一个'MatchObject' 实例

1
2
3
4
5
6
7
8

>>> string_re.match('pmghong hello')


<_sre.SRE_Match object at 0x7f81fea28578>


>>> string_re.match('hello pmghong ')
>>>

>>> string_re.search('pmghong hello')


<_sre.SRE_Match object at 0x7f81fea285e0>


>>> string_re.search('hello pmghong')


<_sre.SRE_Match object at 0x7f81fea28578>

可以看到match 只能匹配字符串在开头的情况,而search 则不管在开头、结尾都可以


在实际程序中,最常见的作法是将 `MatchObject` 保存在一个变量里,然後检查它是否为 None,通常如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> string_re.match('pmghong hello')
<_sre.SRE_Match object at 0x7f81fea28648>
>>> x = string_re.match('pmghong hello')
>>> if x:
...     print 'OK'
...
OK
>>> string_re.match('hello pmghong')
>>> x = string_re.match('hello pmghong')
>>> if x:
...     print 'OK'
... else:
...     print 'Not OK'
...
Not OK

match() 的方法

group()     返回被 RE 匹配的字符串

start()     返回匹配开始的位置

end()     返回匹配结束的位置

span()     返回一个元组包含匹配 (开始,结束) 的位置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> s = "hello python"
>>> r1 = r'hello'
>>> re.match(r1,s)
<_sre.SRE_Match object at 0x7f81fea285e0>
>>>
>>> x = re.match(r1,s)
>>> x.group()
'hello'
>>> x.start()
0
>>> x.end()
5
>>> x.span()
(0, 5)

group() 返回 RE 匹配的子串。start() 和 end() 返回匹配开始和结束时的索引。span() 则用单个元组把开始和结束时的索引一起返回。


re.sub() 替换字符串

1
2
3
4
5
6
7
8
9
>>> s = "hello world"
>>> s.replace('world','boy')
'hello boy'
>>> s.replace('w...d','boy')
'hello world'
>>>
>>> rs = r'w...d'
>>> re.sub(rs,'boy','world would woked hello')
'boy boy boy hello'

replace() 虽然能替换字符串,但它不支持正则表达式,需要匹配正则表达式的话,需要使用sub() 这个函数

re.subn()

1
2
>>> re.subn(rs,'boy','world would woked hello')
('boy boy boy hello', 3)

这个函数也是起到替换字符串的作用,相比于sub() 多了最后一项-- 匹配次数

re.split()切割,相比于split ,可以使用正则表达式匹配

1
2
3
4
5
6
>>> ip = '192.168.10.1'
>>> ip.split('.')
['192', '168', '10', '1']
>>> s = '111+222-333*444/555'
>>> re.split(r'[\+\-\*\/]',s)
['111', '222', '333', '444', '555']

RE 属性

re.compile() 也接受可选的标志参数,常用来实现不同的特殊功能和语法变更

1
>>> p = re.compile('ab*',re.IGONRECASE)

IGNORECASE,I     忽略字符串的大小写

1
2
3
4
5
6
7
>>> string_re = re.compile(r'pmghong',re.I)
>>> string_re.findall('PMGHONG')
['PMGHONG']
>>> string_re.findall('pmghong')
['pmghong']
>>> string_re.findall('Pmghong')
['Pmghong']

DOTALL,S   使“.”匹配包括换行在内的所有字

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> r1 = r"baidu.com"
>>> re.findall(r1,'baidu.com')
['baidu.com']
>>> re.findall(r1,'baidu_com')
['baidu_com']
>>> re.findall(r1,'baidu com')
['baidu com']
>>> re.findall(r1,'baidu\ncom')
[]
>>> re.findall(r1,'baidu\ncom',re.S)
['baidu\ncom']
>>> re.findall(r1,'baidu\tcom',re.S)
['baidu\tcom']

可以看到,一般情况下,"." 这个元字符并不能匹配像\n 这种换行符号,要匹配的话,需要加入S 这个属性

MULTILINE,M 多行匹配,影响$和^

比如说,我想匹配docstring中以"hello"开头的句子时,直接通过正则表达式是匹配不到的

1
2
3
4
5
6
7
8
9
>>> s = '''
... hello boy
... boys and girls
... hello girl
... what a nice day
... '''
>>> r1 = r'^hello'
>>> re.findall(r1,s)
[]

原因是docstring 是这样存放数据的:

1
2
>>> s
'\nhello boy\nboys and girls\nhello girl\nwhat a nice day\n'

所以需要加入M属性,进行多行匹配

1
2
>>> re.findall(r1,s,re.M)
['hello', 'hello']

VERBOSE,X   能够使用REs 的verbose 状态,使之被组织得更清晰易懂

类似的,有时我们正则太长,我们也可以通过分行写,使得结构更清晰易懂一些,但是直接应用这样的正则表达式去匹配字符串的话,也会出问题,原因跟上一个例子一样,因为docstring 会将\n 的字符也存放进去。

1
2
3
4
5
6
7
8
9
>>> tel = r'''
... \d{3,4}
... -?
... \d{8}
... '''
>>> re.findall(tel,'020-88776655')
[]
>>> tel
'\n\\d{3,4}\n-?\n\\d{8}\n'

解决办法就是加入re.X 属性

1
2
>>> re.findall(tel,'020-88776655',re.X)
['020-88776655']

附上网上搜到的一张表


阅读(1529) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~