Chinaunix首页 | 论坛 | 博客
  • 博客访问: 159911
  • 博文数量: 45
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 273
  • 用 户 组: 普通用户
  • 注册时间: 2014-05-28 10:30
文章分类
文章存档

2017年(6)

2016年(3)

2015年(8)

2014年(28)

我的朋友

分类: LINUX

2014-05-28 10:31:40

 

框架如下
PING程序
A.使用的SOCKET接口
1. socket
2. sendto
3. recvfrom
B.PING地址:127.0.0.1
TCP/IP协议栈:
1. IP层
2. ICMP层

很可惜,在这次学习中没能深入路由表的检索中~,感觉还需努力哈~ 希望大家推荐一些路由算法的资料或者书籍 T ^T 不要太深~ 够PING使用就行了~

选择PING本机是因为能了解收发的过程,同时也除去了对网卡硬件的了解的限制,在最小程度下了解TCP/IP协议栈的基本工作原理

在文中有对TCP/IP协议栈理解不足和错误的地方,请大家一定要拍砖指正 = 3= 万分感谢

好~ = 3=)/ 首先来看看PING程序
下面这段PING程序来自网上,感谢这位梁生的无偿奉献 = 3=)/
我稍微做了一下修改,可能不大美观和严谨,C语言编程功夫还需提高啊

 

/***********************************************************
 * 作者:梁俊辉 *
 * 时间:2001年10月 *
 * 名称:myping.c *
 * 说明:本程序用于演示ping命令的实现原理 *
 ***********************************************************/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netdb.h>
#include <setjmp.h>
#include <errno.h>
#define PACKET_SIZE 4096
#define MAX_WAIT_TIME 5
#define MAX_NO_PACKETS 3
char sendpacket[PACKET_SIZE];
char recvpacket[PACKET_SIZE];
int sockfd,datalen=56;
int nsend=0,nreceived=0;
struct sockaddr_in dest_addr;
pid_t pid;
struct sockaddr_in from;
void statistics(int signo);
unsigned short cal_chksum(unsigned short *addr,int len);
int pack(int pack_no);
void send_packet(void);
void recv_packet(void);
int unpack(char *buf,int len);
void tv_sub(struct timeval *out,struct timeval *in);
void statistics(int signo)
{
    printf("\n--------------------PING statistics-------------------\n");
    printf("%d packets transmitted, %d received , %%%d lost\n",nsend,nreceived,(nsend-nreceived)/nsend*100);
    close(sockfd);
    exit(1);
}
/*校验和算法*/
unsigned short cal_chksum(unsigned short *addr,int len)
{
    int nleft=len;
    int sum=0;
    unsigned short *w=addr;
    unsigned short answer=0;
    /*把ICMP报头二进制数据以2字节为单位累加起来*/
    while(nleft>1)
    {
        sum+=*w++;
        nleft-=2;
    }
    /*若ICMP报头为奇数个字节,会剩下最后一字节。把最后一个字节视为一个2字节数据的高字节,这个2字节数据的低字节为0,继续累加*/
    if( nleft==1)
    {
        *(unsigned char *)(&answer)=*(unsigned char *)w;
        sum+=answer;
    }
    sum=(sum>>16)+(sum&0xffff);
    sum+=(sum>>16);
    answer=~sum;
    return answer;
}
/*设置ICMP报头*/
int pack(int pack_no)
{
    int i,packsize;
    struct icmp *icmp;
    struct timeval * tval;
    //将sendpacket强制转换成icmp结构
    icmp = (struct icmp*)sendpacket;
    icmp->icmp_type = ICMP_ECHO; //设置ICMP报文类型
    icmp->icmp_code = 0;
    icmp->icmp_cksum = 0;
    icmp->icmp_seq = pack_no;
    icmp->icmp_id = pid;
    packsize = 8 + datalen;
    tval = (struct timeval *)icmp->icmp_data;
    gettimeofday(tval,NULL);
    icmp->icmp_cksum = cal_chksum( (unsigned short *)icmp,packsize); /*校验算法*/
    return packsize;
}
/*发送三个ICMP报文*/
void send_packet()
{
    int packetsize;
    while( nsend < MAX_NO_PACKETS)
    {
        nsend++;
        packetsize = pack(nsend); /*设置ICMP报头*/
        //int sendto ( SOCKET s , const char FAR *buf , int len , int flags , const struct sockaddr FAR *to , int token );
        //[参数]
        //s - 指向用Socket函数生成的Socket
        //buf - 接受数据的缓冲区(数组)的指针
        //len - 缓冲区的大小
        //flag - 调用方式(MSG_DONTROUTE , MSG_OOB)
        //to - 指向发送方SOCKET地址的指针
        //token - 发送方SOCKET地址的大小 
        if( sendto(sockfd,sendpacket,packetsize,0,(struct sockaddr *)&dest_addr,sizeof(dest_addr) )<0 )
        {
            perror("sendto error");
            continue;
        }
        sleep(1); /*每隔一秒发送一个ICMP报文*/
    }
}
/*接收所有ICMP报文*/
void recv_packet()
{
    int n,fromlen;
    extern int errno;
    signal(SIGALRM,statistics);
    fromlen=sizeof(from);
    while( nreceived<nsend)
    {
        alarm(MAX_WAIT_TIME);
        //recvfrom()返回读入的字节数
        if( (n = recvfrom(sockfd,recvpacket,sizeof(recvpacket),0,(struct sockaddr *)&from,&fromlen)) <0)
        {
            if(errno==EINTR)
                continue;
            perror("recvfrom error");
            continue;
        }
        //解读收到的icmp包
        if(unpack(recvpacket,n) == -1)
            continue;
        nreceived++;
    }
}
/*剥去ICMP报头*/
int unpack(char *buf,int len)
{
    int i,iphdrlen;
    struct ip *ip;
    struct icmp *icmp;
    ip = (struct ip *)buf;
    iphdrlen = ip->ip_hl << 2; /*求ip报头长度,即ip报头的长度标志乘4*/
    icmp = (struct icmp *)(buf+iphdrlen); /*越过ip报头,指向ICMP报头*/
    len -= iphdrlen; /*ICMP报头及ICMP数据报的总长度*/
    if( len < 8) /*小于ICMP报头长度则不合理*/
    {
        printf("ICMP packets\'s length is less than 8\n");
        return -1;
    }
    /*确保所接收的是自己发的ICMP的回应*/
    if( (icmp->icmp_type == ICMP_ECHOREPLY) && (icmp->icmp_id == pid) )
    {
        /*显示相关信息*/
        printf("%d byte from %s: icmp_seq=%u ttl=%d \n",
            len,
            inet_ntoa(from.sin_addr),
            icmp->icmp_seq,
            ip->ip_ttl
            );
    }
    else
        return -1;
}
int main(int argc,char *argv[])
{
    struct hostent *host;
    struct protoent *protocol;
    unsigned long int inaddr = 0;
    int waittime=MAX_WAIT_TIME;
    int size=50*1024;
    //检测参数是否过少
    if(argc<2)
    {
        printf("usage:%s hostname/IP address\n",argv[0]);
        exit(1);
    }
    //getprotobyname()返回对应于给定协议名的包含名字和协议号的protoent结构指针    
    //结构的成员有: 
    //成员 用途 
    //p_name 正规的协议名。 
    //p_aliases 一个以空指针结尾的可选协议名队列。 
    //p_proto 以主机字节顺序排列的协议号 
    if( (protocol=getprotobyname("icmp") )==NULL)
    {
        perror("getprotobyname");
        exit(1);
    }
    /*生成使用ICMP的原始套接字,这种套接字只有root用户才能生成*/
    if( (sockfd = socket(AF_INET,SOCK_RAW,protocol->p_proto) ) < 0)
    {
        perror("socket error");
        exit(1);
    }
    /* 回收root权限,设置当前用户权限*/
    setuid(getuid());
    //初始化dest_addr
    bzero(&dest_addr,sizeof(dest_addr));
    //设置协议家族类型为    AF_INET    
    dest_addr.sin_family = AF_INET;
    /*判断是主机名还是ip地址*/
    if( inaddr = inet_addr(argv[1]) == INADDR_NONE)
    {
        //通过dns取得ip地址
        if((host = gethostbyname(argv[1]) )==NULL) /*是主机名*/
        {
            perror("gethostbyname error");
            exit(1);
        }
        memcpy( (char *)&dest_addr.sin_addr,host->h_addr,host->h_length);
    }
    else
    { /*是ip地址*/
        inaddr = inet_addr(argv[1]);
        memcpy( (char *)&dest_addr.sin_addr,(char *)&inaddr,sizeof(inaddr));
    }
    /*获取main的进程id,用于设置ICMP的标志符*/
    pid=getpid();
    printf("PING %s(%s): %d bytes data in ICMP packets.\n",argv[1],inet_ntoa(dest_addr.sin_addr),datalen);
    send_packet(); /*发送所有ICMP报文*/
    recv_packet(); /*接收所有ICMP报文*/
    statistics(SIGALRM); /*进行统计*/
    return 0;
}

 

PING的流程在上面已经有详细的注释了,我就不说了
PING程序的主要流程分为3个步骤
1. 建立一个socket结构                 ->socket
2. 用这个socket发送ICMP包           ->sendto
3. 用这个socket接收ICMP包           ->recvfrom

由于是PING本机,所以在TCP/IP协议栈中会有4个部分的内容
1. 建立socket
2. 通过socket发送ICMP包
3. 本机收到ICMP包后发送应答
4. 通过socket接收ICMP包

下面我们就来进入TCP/IP协议栈来看看这3个系统调用如何为我们的PING程序服务的

首先是第1部分,建立一个socket结构

sockfd = socket(AF_INET,SOCK_RAW,protocol->p_proto)
这个函数会执行系统调用sys_socketcall
sys_socketcall在/net/socket.c中

asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
    unsigned long a[6];
    unsigned long a0, a1;
    int err;

    //检测参数的数量是否合理
    if (call < 1 || call > SYS_RECVMSG)
        return -EINVAL;
    /* copy_from_user should be SMP safe. */
    //从用户空间拷贝参数到内核空间,复制在a[]数组里
    if (copy_from_user(a, args, nargs[call]))
        return -EFAULT;
    //取得所要判断的跳跃类型
    err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
    if (err)
        return err;
    a0 = a[0];
    a1 = a[1];
    switch (call) {
    case SYS_SOCKET:
        err = sys_socket(a0, a1, a[2]);
        break;
    .........................
    case SYS_SENDTO:
        err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
                 (struct sockaddr __user *)a[4], a[5]);
        break;
    ...............................
    case SYS_RECVFROM:
        err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
                 (struct sockaddr __user *)a[4],
                 (int __user *)a[5]);
        break;
    default:
        err = -EINVAL;
        break;
    }
    return err;
}

上面只列出了我们所用到的3个case
现在我们的目标是case SYS_SOCKET,也就是要创建一个socket了

sys_socket在/net/socket.c中

asmlinkage long sys_socket(int family, int type, int protocol)
{
    int retval;
    struct socket *sock;
    //创建一个socket
    retval = sock_create(family, type, protocol, &sock);
    if (retval < 0)
        goto out;
    //将该socket映射到fd中
    retval = sock_map_fd(sock);
    if (retval < 0)
        goto out_release;
out:
    /* It may be already another descriptor 8) Not kernel problem. */
    return retval;
out_release:
    sock_release(sock);
    return retval;
}

很简单的调用

sock_create在/net/socket.c中

int sock_create(int family, int type, int protocol, struct socket **res)
{
    return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
}

继续,进入到__sock_create中

 

static int __sock_create(struct net *net, int family, int type, int protocol,
             struct socket **res, int kern)
{
    int err;
    struct socket *sock;
    const struct net_proto_family *pf;
    /*
     * Check protocol is in range
     */

    //检测协议家族类型是否在范围之内 
    if (family < 0 || family >= NPROTO)
        return -EAFNOSUPPORT;
    //检测协议传输类型是否在范围之内 
    if (type < 0 || type >= SOCK_MAX)
        return -EINVAL;
    /* Compatibility.
     This uglymoron is moved from INET layer to here to avoid
     deadlock in module load.
     */

     //检测协议家族类型是否为PF_INET
     //检测协议传输类型是否为SOCK_PACKET
    if (family == PF_INET && type == SOCK_PACKET)
    {
        static int warned;
        if (!warned)
        {
            warned = 1;
            printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
             current->comm);
        }
        family = PF_PACKET;
    }
    err = security_socket_create(family, type, protocol, kern);
    if (err)
        return err;
    /*
     *    Allocate the socket and allow the family to set things up. if
     *    the protocol is 0, the family is instructed to select an appropriate
     *    default.
     */

     //分配一个socket
    sock = sock_alloc();
    //检测分配是否成功
    if (!sock)
    {
        if (net_ratelimit())
            printk(KERN_WARNING "socket: no more sockets\n");
        return -ENFILE;    /* Not exactly a match, but its the
                 closest posix thing */

    }
    //设置协议传输类型
    sock->type = type;
#if defined(CONFIG_KMOD)
    /* Attempt to load a protocol module if the find failed.
     *
     * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
     * requested real, full-featured networking support upon configuration.
     * Otherwise module support will break!
     */

    if (net_families[family] == NULL)
        request_module("net-pf-%d", family);
#endif
    rcu_read_lock();
    //根据协议类型取得对应的协议家族结构
    pf = rcu_dereference(net_families[family]);
    err = -EAFNOSUPPORT;
    //检测取得协议结构是否成功
    if (!pf)
        goto out_release;
    /*
     * We will call the ->create function, that possibly is in a loadable
     * module, so we have to bump that loadable module refcnt first.
     */

     //增加协议家族的使用计数器
    if (!try_module_get(pf->owner))
        goto out_release;
    /* Now protected by module ref count */
    rcu_read_unlock();
    //运行协议家族结构中的对socket初始化函数
    err = pf->create(net, sock, protocol);
    //检测初始化是否成功
    if (err < 0)
        goto out_module_put;
    /*
     * Now to bump the refcnt of the [loadable] module that owns this
     * socket at sock_release time we decrement its refcnt.
     */

     //增加socket所使用的协议的使用计数器
    if (!try_module_get(sock->ops->owner))
        goto out_module_busy;
    /*
     * Now that we're done with the ->create function, the [loadable]
     * module can have its refcnt decremented
     */

     //减少协议家族使用计数器
    module_put(pf->owner);
    err = security_socket_post_create(sock, family, type, protocol, kern);
    if (err)
        goto out_sock_release;
    //设置socket指针为初始化完成的socket
    *res = sock;
    return 0;
out_module_busy:
    err = -EAFNOSUPPORT;
out_module_put:
    sock->ops = NULL;
    module_put(pf->owner);
out_sock_release:
    sock_release(sock);
    return err;
out_release:
    rcu_read_unlock();
    goto out_sock_release;
}

security_socket_create,关于security的内容我们都略过,一来减少框架的复杂度,二来我也不知道security主要做的是啥 哈哈 不过可以肯定的是不会妨碍TCP/IP协议栈的正常运行

首先是sock_alloc
sock_alloc在/net/socket.c中

static struct socket *sock_alloc(void)
{
    struct inode *inode;
    struct socket *sock;
    inode = new_inode(sock_mnt->mnt_sb);
    if (!inode)
        return NULL;
    sock = SOCKET_I(inode);
    inode->i_mode = S_IFSOCK | S_IRWXUGO;
    inode->i_uid = current->fsuid;
    inode->i_gid = current->fsgid;
    get_cpu_var(sockets_in_use)++;
    put_cpu_var(sockets_in_use);
    return sock;
}

主要是申请一个新的socket,并对他的文件属性进行初始化,socket是属于虚拟文件系统的一部分,我们暂时只要这一点就好了

回到__sock_create中,然后到
pf = rcu_dereference(net_families[family]);
net_families的初始化我们也不分析,因为涉及的面太广,为了紧扣PING,我们只需要知道得到了inet_family_ops这个结构就可以了,详细的初始化部分在/net/ipv4/af_inet.c中,大家有兴趣的可以看看
inet_family_ops的结构如下

static struct net_proto_family inet_family_ops = {
    .family = PF_INET,
    .create = inet_create,
    .owner    = THIS_MODULE,
};

紧接着我们就到了
err = pf->create(net, sock, protocol);
调用inet_family_ops的create函数

inet_create在/net/ipv4/af_inet.c中

static int inet_create(struct net *net, struct socket *sock, int protocol)
{
    struct sock *sk;
    struct list_head *p;
    struct inet_protosw *answer;
    struct inet_sock *inet;
    struct proto *answer_prot;
    unsigned char answer_flags;
    char answer_no_check;
    int try_loading_module = 0;
    int err;

    //检测socket的协议传输类型是否为RAW
    //检测socket的协议传输类型是否为DGRAM
    //第三个不知道检测的什么
    if (sock->type != SOCK_RAW &&
     sock->type != SOCK_DGRAM &&
     !inet_ehash_secret)
        build_ehash_secret();
    //设置socket的状态为未连接
    sock->state = SS_UNCONNECTED;
    /* Look for the requested type/protocol pair. */
    //初始化协议结构
    answer = NULL;
lookup_protocol:
    err = -ESOCKTNOSUPPORT;
    rcu_read_lock();
    //历遍协议族
    list_for_each_rcu(p, &inetsw[sock->type])
    {
        //取得对应的协议的结构
        answer = list_entry(p, struct inet_protosw, list);
        /* Check the non-wild match. */
        //检测需要的协议是否和当前历遍的协议相等
        if (protocol == answer->protocol)
        {
            //检测需要的协议是否为IP协议
            if (protocol != IPPROTO_IP)
                //跳出循环
                break;
        }
        else
        {
            /* Check for the two wild cases. */
            //检测需要的协议是否为IP协议
            if (IPPROTO_IP == protocol)
            {
                //设置需要的协议为当前历遍的协议
                protocol = answer->protocol;
                //跳出循环
                break;
            }
            //检测当前历遍的协议是否为IP协议
            if (IPPROTO_IP == answer->protocol)
                //跳出循环
                break;
        }
        err = -EPROTONOSUPPORT;
        //设置协议结构为空
        answer = NULL;
    }
    //检测取得协议是否为空
    if (unlikely(answer == NULL))
    {
        if (try_loading_module < 2)
        {
            rcu_read_unlock();
            /*
             * Be more specific, e.g. net-pf-2-proto-132-type-1
             * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
             */

            if (++try_loading_module == 1)
                request_module("net-pf-%d-proto-%d-type-%d",
                     PF_INET, protocol, sock->type);
            /*
             * Fall back to generic, e.g. net-pf-2-proto-132
             * (net-pf-PF_INET-proto-IPPROTO_SCTP)
             */

            else
                request_module("net-pf-%d-proto-%d",
                     PF_INET, protocol);
            goto lookup_protocol;
        }
        else
            goto out_rcu_unlock;
    }
    err = -EPERM;
    if (answer->capability > 0 && !capable(answer->capability))
        goto out_rcu_unlock;
    err = -EAFNOSUPPORT;
    if (!inet_netns_ok(net, protocol))
        goto out_rcu_unlock;
    //设置socket的协议次操作集为当前协议结构的操作集
    sock->ops = answer->ops;
    answer_prot = answer->prot;
    answer_no_check = answer->no_check;
    answer_flags = answer->flags;
    rcu_read_unlock();
    BUG_TRAP(answer_prot->slab != NULL);
    err = -ENOBUFS;
    //分配一个sock结构
    sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot);
    //检测分配是否成功
    if (sk == NULL)
        goto out;
    err = 0;
    sk->sk_no_check = answer_no_check;
    if (INET_PROTOSW_REUSE & answer_flags)
        sk->sk_reuse = 1;
    //将sock结构强制转换成inet_sock结构
    inet = inet_sk(sk);
    inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
    //检测协议传输类型是否为未处理
    if (SOCK_RAW == sock->type)
    {
        //设置本地端口号为协议类型
        inet->num = protocol;
        //检测协议类型是否为未处理
        if (IPPROTO_RAW == protocol)
            inet->hdrincl = 1;
    }
    if (ipv4_config.no_pmtu_disc)
        inet->pmtudisc = IP_PMTUDISC_DONT;
    else
        inet->pmtudisc = IP_PMTUDISC_WANT;

    inet->id = 0;
    //初始化sock
    sock_init_data(sock, sk);
    //设置sock的回收处理函数
    sk->sk_destruct     = inet_sock_destruct;
    //设置sock的协议家族类型
    sk->sk_family     = PF_INET;
    //设置sock的协议类型
    sk->sk_protocol     = protocol;
    sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
    inet->uc_ttl    = -1;
    inet->mc_loop    = 1;
    inet->mc_ttl    = 1;
    inet->mc_index    = 0;
    inet->mc_list    = NULL;
    sk_refcnt_debug_inc(sk);
    //检测本地端口号是否存在
    if (inet->num)
    {
        /* It assumes that any protocol which allows
         * the user to assign a number at socket
         * creation time automatically
         * shares.
         */

         //设置对方端口号为本地端口号
        inet->sport = htons(inet->num);
        /* Add to protocol hash chains. */
        sk->sk_prot->hash(sk);
    }
    //检测协议初始化函数是否存在
    if (sk->sk_prot->init)
    {
        //执行协议初始化函数
        err = sk->sk_prot->init(sk);
        if (err)
            sk_common_release(sk);
    }
out:
    return err;
out_rcu_unlock:
    rcu_read_unlock();
    goto out;
}

inetsw结构的注册不关心,我们看结果

 

answer就是其中的第二项

这里我们的protocol为IPPROTO_ICMP
answer->protocol为IPPROTO_IP

所以是进入了if (IPPROTO_IP == answer->protocol)后break跳出了循环

之后到inet_netns_ok
inet_netns_ok在/net/ipv4/af_inet.c中

 

static inline int inet_netns_ok(struct net *net, int protocol)
{
    int hash;
    struct net_protocol *ipprot;
    if (net == &init_net)
        return 1;
    //取得哈希值
    hash = protocol & (MAX_INET_PROTOS - 1);
    //取得哈希值对应的协议
    ipprot = rcu_dereference(inet_protos[hash]);
    //检测协议是否为空
    if (ipprot == NULL)
        /* raw IP is OK */
        return 1;
    return ipprot->netns_ok;
}

由于在__sock_create中我们传入的net类型为init_net,所以这里是返回1,不会goto out_rcu_unlock结束的

继续在inet_create中向下走,来到了sk_alloc
sk_alloc在/net/core/sock.c中

struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
         struct proto *prot)
{
    struct sock *sk;
    //分配一个sock结构
    sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
    //检测分配是否成功
    if (sk)
    {
        //设置协议家族类型
        sk->sk_family = family;
        /*
         * See comment in struct sock definition to understand
         * why we need sk_prot_creator -acme
         */

         //设置协议主操作集
        sk->sk_prot = sk->sk_prot_creator = prot;
        sock_lock_init(sk);
        sock_net_set(sk, get_net(net));
    }
    return sk;
}

sk_prot_alloc在协议结构的高速缓存中分配一个sock结构,分配成功后进行一些简单的初始化操作便退出了

继续向下走,到sock_init_data
sock_init_data在/net/core/sock.c中

void sock_init_data(struct socket *sock, struct sock *sk)
{
    //初始化skb接收队列
    skb_queue_head_init(&sk->sk_receive_queue);
    //初始化skb发送队列
    skb_queue_head_init(&sk->sk_write_queue);
    //初始化skb错误队列
    skb_queue_head_init(&sk->sk_error_queue);
#ifdef CONFIG_NET_DMA
    skb_queue_head_init(&sk->sk_async_wait_queue);
#endif
    sk->sk_send_head    =    NULL;
    init_timer(&sk->sk_timer);
    sk->sk_allocation    =    GFP_KERNEL;
    sk->sk_rcvbuf        =    sysctl_rmem_default;
    sk->sk_sndbuf        =    sysctl_wmem_default;
    sk->sk_state        =    TCP_CLOSE;
    //连接socket到sock
    sk->sk_socket        =    sock;
    sock_set_flag(sk, SOCK_ZAPPED);
    //检测socket是否存在
    if (sock)
    {
        //设置sock的协议传输类型
        sk->sk_type    =    sock->type;
        //设置sock的等待队列
        sk->sk_sleep    =    &sock->wait;
        //连接sock到socket
        sock->sk    =    sk;
    }
    else
        //设置sock的等待队列为空
        sk->sk_sleep    =    NULL;
    rwlock_init(&sk->sk_dst_lock);
    rwlock_init(&sk->sk_callback_lock);
    lockdep_set_class_and_name(&sk->sk_callback_lock,
            af_callback_keys + sk->sk_family,
            af_family_clock_key_strings[sk->sk_family]);
    //设置sock的状态改变处理函数
    sk->sk_state_change    =    sock_def_wakeup;
    //设置sock的数据准备处理函数
    sk->sk_data_ready    =    sock_def_readable;
    sk->sk_write_space    =    sock_def_write_space;
    //设置sock的错误处理函数
    sk->sk_error_report    =    sock_def_error_report;
    //设置sock的回收处理函数
    sk->sk_destruct        =    sock_def_destruct;
    //发送数据的缓冲页面
    sk->sk_sndmsg_page    =    NULL;
    //发送数据的缓冲页面偏移值
    sk->sk_sndmsg_off    =    0;
    sk->sk_peercred.pid     =    0;
    sk->sk_peercred.uid    =    -1;
    sk->sk_peercred.gid    =    -1;
    sk->sk_write_pending    =    0;
    sk->sk_rcvlowat        =    1;
    sk->sk_rcvtimeo        =    MAX_SCHEDULE_TIMEOUT;
    sk->sk_sndtimeo        =    MAX_SCHEDULE_TIMEOUT;
    sk->sk_stamp = ktime_set(-1L, 0);
    atomic_set(&sk->sk_refcnt, 1);
    atomic_set(&sk->sk_drops, 0);
}

这是个大家伙,负责sock结构的详细初始化
初始化完成后继续inet_create的执行
由于之前设置了inet->num为协议号,这里会执行sk->sk_prot->hash
在进入这个函数之前让我们先来看一下目前sock的结构
 
sk_prot为一个宏  #define sk_prot __sk_common.skc_prot
指向了raw_prot,所以sk->sk_prot->hash就是执行了raw_hash_sk
raw_hash_sk在/net/ipv4/raw.c中

void raw_hash_sk(struct sock *sk)
{
    struct raw_hashinfo *h = sk->sk_prot->h.raw_hash;
    struct hlist_head *head;
    head = &h->ht[inet_sk(sk)->num & (RAW_HTABLE_SIZE - 1)];
    write_lock_bh(&h->lock);
    sk_add_node(sk, head);
    sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
    write_unlock_bh(&h->lock);
}

主要是将raw_prot连接到了socket的队列中,如下图

 
因为raw_prot是有raw_init这个函数的,所以我们进入到sk->sk_prot->init
raw_init在/net/ipv4/raw.c中

static int raw_init(struct sock *sk)
{
    //把sock结构强制转换为raw_sock结构
    struct raw_sock *rp = raw_sk(sk);
    //检测端口号是否为ICMP
    if (inet_sk(sk)->num == IPPROTO_ICMP)
        //清空icmp_filter结构
        memset(&rp->filter, 0, sizeof(rp->filter));
    return 0;
}

结构图如下

 
为什么能一直这样强制转换下去,就不怕结构超界么?
其实这是一早有预谋的,在raw_prot中有一个成员为
.obj_size    = sizeof(struct raw_sock)
而在协议中分配空间的时候就已经分配了raw_sock所需要的空间,我们一直在用他的一部分而已
好, 到这里inet_create就完成了,一路返回到sys_socket中
执行最后一步,把初始化好的socket结构映射到一个文件描述符中,并返回这个文件描述符
这样,我们的ping程序的sockfd就拿到了一个按要求初始化好的socket结构索引号了
在之后的sendto和recvfrom操作中就能够使用这个索引号进行发送和接收了
然后到第2部分,发送初始化好的icmp结构
sendto(sockfd,sendpacket,packetsize,0,(struct sockaddr *)&dest_addr,sizeof(dest_addr)
继续来到系统调用sys_socketcall中
这次我们的目标是case SYS_SENDTO
sys_sendto在/net/socket.c中

asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
             unsigned flags, struct sockaddr __user *addr,
             int addr_len)
{
    struct socket *sock;
    char address[MAX_SOCK_ADDR];
    int err;
    struct msghdr msg;
    struct iovec iov;
    int fput_needed;
    //从文件描述符中返回socket
    sock = sockfd_lookup_light(fd, &err, &fput_needed);
    if (!sock)
        goto out;
    //取得需要发送数据的起始地址
    iov.iov_base = buff;
    //取得需要发送数据的数据长度
    iov.iov_len = len;
    msg.msg_name = NULL;
    //连接iov到msg
    msg.msg_iov = &iov;
    msg.msg_iovlen = 1;
    msg.msg_control = NULL;
    msg.msg_controllen = 0;
    msg.msg_namelen = 0;
    //是否有地址参数
    if (addr)
    {
        //从用户数据转换为内核数据
        err = move_addr_to_kernel(addr, addr_len, address);
        if (err < 0)
            goto out_put;
        //设置地址
        msg.msg_name = address;
        //设置地址长度
        msg.msg_namelen = addr_len;
    }
    if (sock->file->f_flags & O_NONBLOCK)
        flags |= MSG_DONTWAIT;
    msg.msg_flags = flags;
    err = sock_sendmsg(sock, &msg, len);
out_put:
    fput_light(sock->file, fput_needed);
out:
    return err;
}

初始化好的msg结构如下

 

 

在iovec结构中保存了我们要发送数据的首地址和大小

然后进入到sock_sendmsg
sock_sendmsg在/net/socket.c中

int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
    struct kiocb iocb;
    struct sock_iocb siocb;
    int ret;

    init_sync_kiocb(&iocb, NULL);
    iocb.private = &siocb;
    ret = __sock_sendmsg(&iocb, sock, msg, size);
    if (-EIOCBQUEUED == ret)
        ret = wait_on_sync_kiocb(&iocb);
    return ret;
}

我不大明白kiocb的用处,google也不是说得很清楚,大概就是说关于文件同步操作方面上的,请明白的同学们指教一下 = 3=)/ 感谢  这里就不把kiocb的结构画进来了

然后进入到__sock_sendmsg
__sock_sendmsg在/net/socket.c中

static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
                 struct msghdr *msg, size_t size)
{
    struct sock_iocb *si = kiocb_to_siocb(iocb);
    int err;

    //连接socket
    si->sock = sock;
    si->scm = NULL;
    //连接msg
    si->msg = msg;
    //设置需要拷贝的数据大小
    si->size = size;
    err = security_socket_sendmsg(sock, msg, size);
    if (err)
        return err;
    return sock->ops->sendmsg(iocb, sock, msg, size);
}

连接完成后的结构图如下

 
sock->ops->sendmsg调用的为inet_sockraw_ops中的sendmsg操作,也就是inet_sendmsg函数
inet_sendmsg在/net/ipv4/af_inet.c中

int inet_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
         size_t size)
{
    struct sock *sk = sock->sk;
    /* We may need to bind the socket. */
    //检测端口号是否存在
    if (!inet_sk(sk)->num && inet_autobind(sk))
        return -EAGAIN;
    return sk->sk_prot->sendmsg(iocb, sk, msg, size);
}

我们在之前已经设置了端口号,所以这里直接来到了sk->sk_prot->sendmsg
sk->sk_prot->sendmsg调用的是raw_prot中的sendmsg操作,也就是raw_setsockopt函数

raw_setsockopt在/net/ipv4/raw.c中

static int raw_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
         size_t len)
{
    struct inet_sock *inet = inet_sk(sk);
    struct ipcm_cookie ipc;
    struct rtable *rt = NULL;
    int free = 0;
    __be32 daddr;
    __be32 saddr;
    u8 tos;
    int err;

    err = -EMSGSIZE;
    //检测数据的长度是否过长
    if (len > 0xFFFF)
        goto out;
    /*
     *    Check the flags.
     */

    err = -EOPNOTSUPP;
    if (msg->msg_flags & MSG_OOB)    /* Mirror BSD error message */
        goto out; /* compatibility */
    /*
     *    Get and verify the address.
     */

    //检测是否有目的地址
    if (msg->msg_namelen)
    {
        //将地址数据格式化成sockaddr_in结构
        struct sockaddr_in *usin = (struct sockaddr_in*)msg->msg_name;    
        err = -EINVAL;
        //检测地址数据长度是否过小
        if (msg->msg_namelen < sizeof(*usin))
            goto out;
        //检测协议家族类型是否为AF_INET
        if (usin->sin_family != AF_INET)
        {
            static int complained;      
            if (!complained++)
                printk(KERN_INFO "%s forgot to set AF_INET in "
                         "raw sendmsg. Fix it!\n",
                         current->comm);      
            err = -EAFNOSUPPORT;
            //检测是否存在协议家族类型
            if (usin->sin_family)
                goto out;
        }
        //取得目的地址IP
        daddr = usin->sin_addr.s_addr;
        /* ANK: I did not forget to get protocol from port field.
         * I just do not know, who uses this weirdness.
         * IP_HDRINCL is much more convenient.
         */

    }
    else
    {
        err = -EDESTADDRREQ;
        if (sk->sk_state != TCP_ESTABLISHED)
            goto out;
        daddr = inet->daddr;
    }
    ipc.addr = inet->saddr;
    ipc.opt = NULL;
    ipc.oif = sk->sk_bound_dev_if;
    //检测是否有控制信息
    if (msg->msg_controllen)
    {
        err = ip_cmsg_send(sock_net(sk), msg, &ipc);
        if (err)
            goto out;
        if (ipc.opt)
            free = 1;
    }
    saddr = ipc.addr;
    ipc.addr = daddr;
    //检测是否存在ip_options
    if (!ipc.opt)
        //无则设置为inet_sock中的ip_options
        ipc.opt = inet->opt;
    //检测是否存在ip_options
    if (ipc.opt)
    {
        err = -EINVAL;
        /* Linux does not mangle headers on raw sockets,
         * so that IP options + IP_HDRINCL is non-sense.
         */

        if (inet->hdrincl)
            goto done;
        if (ipc.opt->srr)
        {
            if (!daddr)
                goto done;
            daddr = ipc.opt->faddr;
        }
    }
    //取得服务类型
    tos = RT_CONN_FLAGS(sk);
    if (msg->msg_flags & MSG_DONTROUTE)
        tos |= RTO_ONLINK;
    //检测是否为多播地址
    if (ipv4_is_multicast(daddr))
    {
        if (!ipc.oif)
            ipc.oif = inet->mc_index;
        if (!saddr)
            saddr = inet->mc_addr;
    }
    //进行路由表查询
    {
        struct flowi fl = { .oif = ipc.oif,
                 .mark = sk->sk_mark,
                 .nl_u = { .ip4_u =
                     { .daddr = daddr,
                        .saddr = saddr,
                        .tos = tos } },
                 .proto = inet->hdrincl ? IPPROTO_RAW :
                             sk->sk_protocol,
                 };
        if (!inet->hdrincl)
        {
            err = raw_probe_proto_opt(&fl, msg);
            if (err)
                goto done;
        }
        security_sk_classify_flow(sk, &fl);
        err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1);
    }
    if (err)
        goto done;
    err = -EACCES;
    if (rt->rt_flags & RTCF_BROADCAST && !sock_flag(sk, SOCK_BROADCAST))
        goto done;
    if (msg->msg_flags & MSG_CONFIRM)
        goto do_confirm;
back_from_confirm:
    if (inet->hdrincl)
    {
        err = raw_send_hdrinc(sk, msg->msg_iov, len,rt, msg->msg_flags);
    }
    else
    {
        if (!ipc.addr)
            ipc.addr = rt->rt_dst;
        lock_sock(sk);
        //拷贝需要发送的数据到skb中
        err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, len, 0,
                    &ipc, rt, msg->msg_flags);
        //检测拷贝是否成功
        if (err)
            //不成功则释放所有sock下发送队列中所有的skb
            ip_flush_pending_frames(sk);
        else if (!(msg->msg_flags & MSG_MORE))
            //发送sk中的skb
            err = ip_push_pending_frames(sk);
        release_sock(sk);
    }
done:
    if (free)
        kfree(ipc.opt);
    ip_rt_put(rt);
out:
    if (err < 0)
        return err;
    return len;
do_confirm:
    dst_confirm(&rt->u.dst);
    if (!(msg->msg_flags & MSG_PROBE) || len)
        goto back_from_confirm;
    err = 0;
    goto done;
}

这里最关键的就是
err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1);
这是一个路由表查询函数

无能为力........

不过我根据DEBUG的信息把查询结果画了出来,分别为ipcm_cookie和rtable两个结构,其中最关键的为rtable中的dst_entry

 
rtable中的idev连接lo这个环回虚拟网卡设备
lo网卡的注册在/drivers/net/loopback.c中
由于牵涉到路由表的添加问题,我这里就不介绍他的注册了
现在回到raw_sendmsg,进入ip_append_data, ip_append_data负责将要发送的数据组装到sk_buff结构中
阅读(862) | 评论(0) | 转发(0) |
0

上一篇:没有了

下一篇:LINUX下PING与TCP_IP协议栈学习笔记(2)

给主人留下些什么吧!~~