public class UniquePaths {
public static void main(String[] args) {
// TODO Auto-generated method stub
}
public int uniquePaths(int m, int n) {
// int[][] pathcount=new int[m][n];
// for(int i = 0; i < n; i++)
// pathcount[0][i] = 1;
// for(int i = 0; i < m; i++)
// pathcount[i][0] = 1;
// for(int i = 1; i < m; i++)
// for(int j = 1; j < n; j++)
// pathcount[i][j] = pathcount[i-1][j] + pathcount[i][j-1];
// return pathcount[m-1][n-1];
//使用滚动数组,节省空间:
int[] v=new int[n];
for(int i = 0; i < n; i++)
v[i] = 1;
for(int i=1; i<m; ++i){
for(int j=1; j<n; ++j){
v[j]+=v[j-1];
}
}
return v[n-1];
}
}
//Unique Paths II Total Accepted: 40909 Total Submissions: 146251 My Submissions Question Solution
//Follow up for "Unique Paths":
//
//Now consider if some obstacles are added to the grids. How many unique paths would there be?
//
//An obstacle and empty space is marked as 1 and 0 respectively in the grid.
//
//For example,
//There is one obstacle in the middle of a 3x3 grid as illustrated below.
//
//[
// [0,0,0],
// [0,1,0],
// [0,0,0]
//]
//The total number of unique paths is 2.
//
//Note: m and n will be at most 100.
public class UniquePathsII {
public static void main(String[] args) {
// TODO Auto-generated method stub
}
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid.length==0||obstacleGrid[0].length==0)
return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int[][] pathcount=new int[m][n];
for(int i = 0; i < n; i++){
if(obstacleGrid[0][i]==1)
break;
pathcount[0][i] = 1;
}
for(int i = 0; i < m; i++){
if(obstacleGrid[i][0]==1)
break;
pathcount[i][0] = 1;
}
for(int i = 1; i < m; i++)
//使用滚动数组 在这里给第一个元素的赋给第一列的初始值,需要O(m+n)的空间,不断对一行操作
for(int j = 1; j < n; j++){
//判断obstacleGrid[i][j]
if(obstacleGrid[i][j]==1){
pathcount[i][j] = 0;
}else{
pathcount[i][j] = pathcount[i-1][j] + pathcount[i][j-1];
}
}
return pathcount[m-1][n-1];
}
}
阅读(620) | 评论(0) | 转发(0) |