//Minimum Path Sum Total Accepted: 44225 Total Submissions: 136918 My Submissions Question Solution
//Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
//
//Note: You can only move either down or right at any point in time.
public class MinimumPathSum {
public static void main(String[] args) {
// TODO Auto-generated method stub
}
//递归又超时了
// public int minPathSum(int[][] grid) {
// if(grid==null||grid.length==0||grid[0].length==0)
// return 0;
// return findMinValue(grid,0,0);
// }
// private int findMinValue(int[][] grid, int i, int j) {
// // TODO Auto-generated method stub
// if(i==grid.length-1&&j==grid[0].length-1)
// return grid[i][j];
// int down=Integer.MAX_VALUE;
// int right=Integer.MAX_VALUE;
// //从下面上来
// if(i<grid.length-1)
// down=grid[i][j]+findMinValue(grid,i+1,j);
// //右边的
// if(j<grid[0].length-1)
// right=grid[i][j]+findMinValue(grid,i,j+1);
// return Math.min(down, right);
// }
public int minPathSum(int[][] grid) {
//把结果都保存到数组中就行,节省时间
if(grid==null||grid.length==0||grid[0].length==0)
return 0;
int m=grid.length;
int n=grid[0].length;
int sum[][]=new int[m][n];
sum[m-1][n-1]=grid[m-1][n-1];
//粗心-写成+
for(int i=m-2;i>=0;i--){
sum[i][n-1]=sum[i+1][n-1]+grid[i][n-1];
}
for(int j=n-2;j>=0;j--){
sum[m-1][j]=sum[m-1][j+1]+grid[m-1][j];
}
for(int i=m-2;i>=0;i--)
for(int j=n-2;j>=0;j--){
sum[i][j]=Math.min(sum[i+1][j],sum[i][j+1])+grid[i][j];
}
return sum[0][0];
}
}
阅读(265) | 评论(0) | 转发(0) |