Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
注意:写的过程中问题不少 :穷举是跑不过的。要使用dp ,另外在循环中调用函数效率太低,我们要先把参数保留,等循环执行完了在调用函数,并且之前写代码的时候注意true==a,常量写前面。
public class LongestPalindromicSubstring {
public static void main(String[] args) {
// TODO 自动生成的方法存根
System.out.println("dfsa".substring(1,2));
System.out.print(longestPalindrome("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"));
}
//穷举法
// public static String longestPalindrome(String s) {
// if(s==null)
// return null;
// int max=0;
// String longString="";
// for(int i=0;i
// String eString = null;
// for(int j=s.length();j>i;j--){
// eString=s.substring(i, j);
// if(isPalindromic(eString))
// break;
// }
// if(eString.length()>max){
// max=eString.length();
// longString=eString;
// }
// }
// return longString;
//
//
// }
// private static boolean isPalindromic(String s) {
// if(s.length()==0)
// return true;
// int i=0;
// int j=s.length()-1;
// while(i
// if(s.charAt(i)!=s.charAt(j))
// return false;
// i++;
// j--;
// }
// return true;
//
// }
//Dp
public static String longestPalindrome(String s) {
if(s==null&&s.length()==0)
return "";
int len=s.length();
if(len==1)
return s;
int start=0;
int end=0;
int max=0;
boolean[][] flag=new boolean[len][len];
for(int i=0;i
for(int j=0;j
{
if(i>=j)
flag[i][j]=true;
}
for(int j=1;j
for(int i=0;i
if(s.charAt(i)==s.charAt(j)&&flag[i+1][j-1]){
flag[i][j]=true;
int subcount=j-i+1;
if(max
max=subcount;
start=i;
end=j;
}
}
else {
flag[i][j]=false;
}
}
return s.substring(start, end+1);
}
}
阅读(752) | 评论(0) | 转发(0) |