Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3129722
  • 博文数量: 685
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 5303
  • 用 户 组: 普通用户
  • 注册时间: 2014-04-19 14:17
个人简介

文章分类

全部博文(685)

文章存档

2015年(116)

2014年(569)

分类: LINUX

2014-09-13 16:05:57

原文地址:http://www.cnblogs.com/shineshqw/articles/2359114.html

kdb:只能在汇编代码级进行调试;

  优点是不需要两台机器进行调试。

  gdb:在调试模块时缺少一些至关重要的功能,它可用来查看内核的运行情况,包括反汇编内核函数。

  kgdb:能很方便的在源码级对内核进行调试,缺点是kgdb只能进行远程调试,它需要一根串口线及两台机器来调试内核(也可以是在同一台主机上用vmware软件运行两个操作系统来调试)

printk() 是调试内核代码时最常用的一种技术。在内核代码中的特定位置加入printk() 调试调用,可以直接把所关心的信息打打印到屏幕上,从而可以观察程序的执行路径和所关心的变量、指针等信息。 Linux 内核调试器(Linux kernel debugger,kdb)是 Linux 内核的补丁,它提供了一种在系统能运行时对内核内存和数据结构进行检查的办法。Oops、KDB在文章掌握 Linux 调试技术有详细介绍,大家可以参考。 Kprobes 提供了一个强行进入任何内核例程,并从中断处理器无干扰地收集信息的接口。使用 Kprobes 可以轻松地收集处理器寄存器和全局数据结构等调试信息,而无需对Linux内核频繁编译和启动,具体使用方法,请参考使用 Kprobes 调试内核。

/proc文件系统

在 /proc 文件系统中,对虚拟文件的读写操作是一种与内核通信的手段,要查看内核回环缓冲区中的消息,可以使用 dmesg 工具(或者通过 /proc 本身使用 cat /proc/kmsg 命令)。清单 6 给出了 dmesg 显示的最后几条消息。

清单 6. 查看来自 LKM 的内核输出

[root@plato]# dmesg | tail -5 cs: IO port probe 0xa00-0xaff: clean.
eth0: Link is down
eth0: Link is up, running at 100Mbit half-duplex
my_module_init called.  Module is now loaded.
my_module_cleanup called.  Module is now unloaded.


可以在内核输出中看到这个模块的消息。现在让我们暂时离开这个简单的例子,来看几个可以用来开发有用 LKM 的内核 API。

调试工具

  使用调试器来一步步地跟踪代码,查看变量和计算机寄存器的值。在内核中使用交互式调试器是一个很复杂的问题。内核在它自己的地址空间中运行。许多用户空间下的调试器所提供的常用功能很难用于内核之中,比如断点和单步调试等。

目录

[]

内核bug跟踪

oops消息分析

(1)oops消息产生机制

oops(也称 panic),称程序运行崩溃,程序崩溃后会产生oops消息。应用程序或内核线程的崩溃都会产生oops消息,通常发生oops时,系统不会发生死机,而在终端或日志中打印oops信息。

当使用NULL指针或不正确的指针值时,通常会引发一个 oops 消息,这是因为当引用一个非法指针时,页面映射机制无法将虚拟地址映像到物理地址,处理器就会向操作系统发出一个"页面失效"的信号。内核无法"换页"到并不存在的地址上,系统就会产生一个"oops"。

oops 显示发生错误时处理器的状态,包括 CPU 寄存器的内容、页描述符表的位置,以及其一些难理解的信息。这些消息由失效处理函数(arch/*/kernel/traps.c)中的printk 语句产生。较为重要的信息就是指令指针(EIP),即出错指令的地址。

由于很难从十六进制数值中看出含义,可使用符号解析工具klogd。klogd 守护进程能在 oops 消息到达记录文件之前对它们解码。klogd在缺省情况下运行并进行符号解码。

通常Oops文本由klogd从内核缓冲区里读取并传给syslogd,由syslogd写到syslog文件中,该文件典型为/var/log/messages(依赖于/etc/syslog.conf)。如果klogd崩溃了,用户可"dmesg > file"从内核缓冲区中读取数据并保存下来。还可用"cat /proc/kmsg > file"读取数据,此时,需要用户中止传输,因为kmsg是一个"永不结束的文件"。

当保护错误发生时,klogd守护进程自动把内核日志信息中的重要地址翻译成它们相应的符号。klogd执行静态地址翻译和动态地址翻译。静态地址翻译使用System.map文件将符号地址翻译为符号。klogd守护进程在初始化时必须能找到system.map文件。

动态地址翻译通常对内核模块中的符号进行翻译。内核模块的内存从内核动态内存池里分配,内核模块中符号的位置在内核装载后才最终确定。

Linux内核提供了调用,允许程序决定装载哪些模块和它们在内存中位置。通过这些系统调用,klogd守护进程生成一张符号表用于调试发生在可装载模块中的保护错误。内核模块的装载或者卸载都会自动向klogd发送信号,klogd可将内核模块符号的地址动态翻译为符号字符串。

(2)产生oops的样例代码

使用空指针和缓冲区溢出是产生oops的两个最常见原因。下面两个函数faulty_write和faulty_read是一个内核模块中的写和读函数,分别演示了这两种情况。当内核调用这两个函数时,会产生oops消息。

函数faulty_write删除一个NULL指针的引用,由于0不是一个有效的指针值,内核将打印oops信息,并接着,杀死调用些函数的进程。
ssize_t faulty_write (struct file *filp, const char _ _user *buf, size_t count, loff_t *pos) { /* make a simple fault by dereferencing a NULL pointer */ *(int *)0 = 0; return 0; }

函数faulty_write产生oops信息列出如下(注意 EIP 行和 stack 跟踪记录中已经解码的符号):
Unable to handle kernel NULL pointer dereference at virtual address \
   00000000 

printing eip: c48370c3 *pde = 00000000 Oops: 0002 CPU:0 EIP: 0010:[faulty:faulty_write+3/576] EFLAGS: 00010286 eax: ffffffea ebx: c2c55ae0 ecx: c48370c0 edx: c2c55b00 esi: 0804d038 edi: 0804d038 ebp: c2337f8c esp: c2337f8c ds: 0018 es: 0018 ss: 0018 Processcat (pid:23413,stackpage=c2337000) Stack: 00000001 c01356e6 c2c55ae0 0804d038 00000001 c2c55b00 c2336000 \

          00000001 
     0804d038 bffffbd4 00000000 00000000 bffffbd4 c010b860 00000001 \ 
          0804d038 
     00000001 00000001 0804d038 bffffbd4 00000004 0000002b 0000002b \ 
          00000004 

Call Trace: [sys_write+214/256][system_call+52/56]

Code: c7 05 00 00 00 00 00 00 00 00 31 c0 89 ec 5d c3 8d b6 00 00

上述oops消息中,字符串 3/576 表示处理器正处于函数的第3个字节上,函数整体长度为 576 个字节。 函数faulty_read拷贝一个字符串到本地变量,由于字符串比目的地数组长造成缓冲区溢出。当函数返回时,缓冲区溢出导致产生oops信息。因为返回指令引起指令指针找不到运行地址,这种错误很难发现和跟踪。
ssize_t faulty_read(struct file *filp, char _ _user *buf, size_t count, loff_t *pos) { int ret; char stack_buf[4]; /* Let's try a buffer overflow */ memset(stack_buf, 0xff, 20); if (count > 4) count = 4; /* copy 4 bytes to the user */ ret = copy_to_user(buf, stack_buf, count); if (!ret) return count; return ret; }

函数faulty_read产生oops信息列出如下:
EIP: 0010:[<00000000>]

Unable to handle kernel paging request at virtual address ffffffff printing eip: ffffffff Oops: 0000[#5] SMP CPU: 0 EIP: 0060:[] Not tainted EFLAGS: 00010296(2.6.6) EIP is at 0xffffffff eax: 0000000c ebx: ffffffff ecx: 00000000 edx: bfffda7c esi: cf434f00 edi: ffffffff ebp: 00002000 esp: c27fff78 ds: 007b es: 007b ss: 0068 Processhead (pid: 2331,threadinfo=c27fe000 task=c3226150) Stack: ffffffff bfffda70 00002000 cf434f20 00000001 00000286 cf434f00 fffffff7 bfffda70 c27fe000 c0150612 cf434f00 bfffda70 00002000 cf434f20 00000000 00000003 00002000 c0103f8f 00000003 bfffda70 00002000 00002000 bfffda70 Call Trace:[] sys_read+0x42/0x70[] syscall_call+0x7/0xb

Code: Bad EIP value.

在上述oops消息中,由于缓冲区溢出,仅能看到函数调用栈的一部分,看不见函数名vfs_read和faulty_read,并且代码(Code)处仅输出"bad EIP value.",列在栈上开始处的地址"ffffffff"表示内核栈已崩溃。

(3)oops信息分析

面对产生的oops信息,首先应查找源程序发生oops的位置,通过查看指令指令寄存器EIP的值,可以找到位置,如:EIP: 0010:[faulty:faulty_write+3/576]。

再查找函数调用栈(call stack)可以得到更多的信息。从函数调用栈可辨别出局部变量、全局变量和函数参数。例如:在函数faulty_read的oops信息的函数调用栈中,栈顶为ffffffff,栈顶值应为一个小于ffffffff的值,为此值,说明再找不回调用函数地址,说明有可能因缓冲区溢出等原因造成指针错误。

在x86构架上,用户空间的栈从0xc0000000以下开始,递归值bfffda70可能是用户空间的栈地址。实际上它就是传递给read系统调用的缓冲区地址,系统调用read进入内核时,将用户空间缓冲区的数据拷贝到内核空间缓冲区。

如果oops信息显示触发oops的地址为0xa5a5a5a5,则说明很可能是因为没有初始化动态内存引起的。

另外,如果想看到函数调用栈的符号,编译内核时,请打开CONFIG_KALLSYMS选项。

klogd 提供了许多信息来帮助分析。为了使 klogd 正确地工作,必须在 /boot 中提供符号表文件 System.map。如果符号表与当前内核不匹配,klogd 就会拒绝解析符号。

有时内核错误会将系统完全挂起。例如代码进入一个死循环,系统不会再响应任何动作。这时可通过在一些关键点上插入 schedule 调用可以防止死循环。

系统崩溃重启动

由于内核运行错误,在某些极端情况下,内核会运行崩溃,内核崩溃时会导致死机。为了解决此问题,内核引入了快速装载和重启动新内核机制。内核通过kdump在崩溃时触发启动新内核,存储旧内存映像以便于调试,让系统在新内核上运行 ,从而避免了死机,增强了系统的稳定性。

(1)工具kexec介绍

kexec是一套系统调用,允许用户从当前正执行的内核装载另一个内核。用户可用shell命令"yum install kexec-tools"安装kexec工具包,安装后,就可以使用kexec命令。

工具kexec直接启动进入一个新内核,它通过系统调用使用户能够从当前内核装载并启动进入另一个内核。在当前内核中,kexec执行BootLoader的功能。在标准系统启动和kexec启动之间的主要区别是:在kexec启动期间,依赖于硬件构架的固件或BIOS不会被执行来进行硬件初始化。这将大大降低重启动的时间。

为了让内核的kexec功能起作用,内核编译配置是应确认先择了"CONFIG_KEXEC=y",在配置后生成的.config文件中应可看到此条目。

工具kexec的使用分为两步,首先,用kexec将调试的内核装载进内存,接着,用kexec启动装载的内核。

装载内核的语法列出如下:

kexec -l kernel-image --append=command-line-options --initrd=initrd-image

上述命令中,参数kernel-image为装载内核的映射文件,该命令不支持压缩的内核映像文件bzImage,应使用非压缩的内核映射文件vmlinux;参数initrd-image为启动时使用initrd映射文件;参数command-line-options为命令行选项,应来自当前内核的命令行选项,可从文件"/proc/cmdline"中提取,该文件的内容列出如下:

^-^$ cat /proc/cmdline

ro root=/dev/VolGroup00/LogVol00 rhgb quiet

例如:用户想启动的内核映射为/boot/vmlinux,initrd为/boot/initrd,则kexec加载命令列出如下:

Kexec –l /boot/vmlinux –append=/dev/VolGroup00/LogVol00 initrd=/boot/initrd

还可以加上选项-p或--load-panic,表示装载新内核在系统内核崩溃使用。

在内核装载后,用下述命令启动装载的内核,并进行新的内核中运行:

kexec -e

当kexec将当前内核迁移到新内核上运行时,kexec拷贝新内核到预保留内存块,该保留位置如图1所示, 原系统内核给kexec装载内核预保留一块内存(在图中的阴影部分),用于装载新内核,其他内存区域在未装载新内核时,由原系统内核使用。


阅读(1131) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~