说起DMA我们并不陌生,但是实际编程中去用的人不多吧,最多就是网卡驱动里的环形buffer,再有就是设备的dma,下面我们就分析分析.
DMA用来在设备内存和内存之间直接数据交互。而无需cpu干预
内核为了方便驱动的开发,已经提供了几个dma 函数接口。
dma跟硬件架构相关,所以linux关于硬件部分已经给屏蔽了,有兴趣的可以深入跟踪学习.
按照linux内核对dma层的架构设计,各平台dma缓冲区映射之间的差异由内核定义的一个dma操作集
include/linux/dma-mapping.h:点击(此处)折叠或打开
-
struct dma_map_ops {
-
void* (*alloc)(struct device *dev, size_t size,
-
dma_addr_t *dma_handle, gfp_t gfp,
-
struct dma_attrs *attrs);
-
void (*free)(struct device *dev, size_t size,
-
void *vaddr, dma_addr_t dma_handle,
-
struct dma_attrs *attrs);
-
int (*mmap)(struct device *, struct vm_area_struct *,
-
void *, dma_addr_t, size_t, struct dma_attrs *attrs);
-
-
int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
-
dma_addr_t, size_t, struct dma_attrs *attrs);
-
-
dma_addr_t (*map_page)(struct device *dev, struct page *page,
-
unsigned long offset, size_t size,
-
enum dma_data_direction dir,
-
struct dma_attrs *attrs);
-
void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
-
size_t size, enum dma_data_direction dir,
-
struct dma_attrs *attrs);
-
int (*map_sg)(struct device *dev, struct scatterlist *sg,
-
int nents, enum dma_data_direction dir,
-
struct dma_attrs *attrs);
-
void (*unmap_sg)(struct device *dev,
-
struct scatterlist *sg, int nents,
-
enum dma_data_direction dir,
-
struct dma_attrs *attrs);
-
void (*sync_single_for_cpu)(struct device *dev,
-
dma_addr_t dma_handle, size_t size,
-
enum dma_data_direction dir);
-
void (*sync_single_for_device)(struct device *dev,
-
dma_addr_t dma_handle, size_t size,
-
enum dma_data_direction dir);
-
void (*sync_sg_for_cpu)(struct device *dev,
-
struct scatterlist *sg, int nents,
-
enum dma_data_direction dir);
-
void (*sync_sg_for_device)(struct device *dev,
-
struct scatterlist *sg, int nents,
-
enum dma_data_direction dir);
-
int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
-
int (*dma_supported)(struct device *dev, u64 mask);
-
int (*set_dma_mask)(struct device *dev, u64 mask);
-
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
-
u64 (*get_required_mask)(struct device *dev);
-
#endif
-
int is_phys;
-
}
来统一屏蔽实现的差异.
不同差异主要来来自cache的问题
Cache与dma同步问题,这里不深入讨论.
另外一个常用的函数是Dma_set_mask, 为了通知内核设备能够寻址的范围,很多时候设备能够寻址的范围有限。
Dma映射可以分为三类:
1. 一致性dma映射 dma_alloc_coherent (问题:驱动使用的buffer不是自身申请的,而是其他模块)
当驱动模块主动分配一个Dma缓冲区并且dma生存期和模块一样时
参数说明:
(1)这个函数的返回值是缓冲的一个内核虚拟地址, 它可被驱动使用
(2)第三个参数dma_handle:
其间相关的物理地址在 dma_handle 中返回
2. 流式dma映射 dma_map_single
通常用于把内核一段buffer映射,返回物理地址.
如果驱动模块需要使用从别的模块传进来的虚拟地址空间作为dma缓冲区,保证地址的线性 cache一致性
一致性api接口:sync_single_for_cpu
3.分散/聚集映射(scatter/gather map) Dma_map_sgs
有时候我们还需要
1. 回弹缓冲区 bounce buffer:当cpu侧物理地址不适合设备的dma操作的时候
2.
DmA内存池:一般dma映射都是单个page的整数倍,如果驱动程序需要更小的一致性映射的dma缓冲区,可以使用。类似于slab机制,
Dma_pool_create
下面我们就那网卡驱动的例子说说dma的具体应用,参考linux kernel e1000网卡
drivers/net/ethernet/intel/e1000/*
Ring buffer
Dma不能为高端内存,一般为32,默认低端内存,由于设备能够访问的地址范围有限。
设备使用物理地址,而代码使用虚拟地址。
就看看如何发送数据包:e1000_main.c:
e1000_xmit_frame: 关于帧的发送流程这里不多说.
-
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
-
struct net_device *netdev)
-
{
-
struct e1000_adapter *adapter = netdev_priv(netdev);
-
struct e1000_hw *hw = &adapter->hw;
-
struct e1000_tx_ring *tx_ring;
-
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
-
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
-
unsigned int tx_flags = 0;
-
unsigned int len = skb_headlen(skb);
-
unsigned int nr_frags;
-
unsigned int mss;
-
int count = 0;
-
int tso;
-
unsigned int f;
-
-
/* This goes back to the question of how to logically map a tx queue
-
* to a flow. Right now, performance is impacted slightly negatively
-
* if using multiple tx queues. If the stack breaks away from a
-
* single qdisc implementation, we can look at this again. */
-
tx_ring = adapter->tx_ring;
-
-
if (unlikely(skb->len <= 0)) {
-
dev_kfree_skb_any(skb);
-
return NETDEV_TX_OK;
-
}
-
-
/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
-
* packets may get corrupted during padding by HW.
-
* To WA this issue, pad all small packets manually.
-
*/
-
if (skb->len < ETH_ZLEN) {
-
if (skb_pad(skb, ETH_ZLEN - skb->len))
-
return NETDEV_TX_OK;
-
skb->len = ETH_ZLEN;
-
skb_set_tail_pointer(skb, ETH_ZLEN);
-
}
-
-
mss = skb_shinfo(skb)->gso_size;
-
/* The controller does a simple calculation to
-
* make sure there is enough room in the FIFO before
-
* initiating the DMA for each buffer. The calc is:
-
* 4 = ceil(buffer len/mss). To make sure we don't
-
* overrun the FIFO, adjust the max buffer len if mss
-
* drops. */
-
if (mss) {
-
u8 hdr_len;
-
max_per_txd = min(mss << 2, max_per_txd);
-
max_txd_pwr = fls(max_per_txd) - 1;
-
-
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
-
if (skb->data_len && hdr_len == len) {
-
switch (hw->mac_type) {
-
unsigned int pull_size;
-
case e1000_82544:
-
/* Make sure we have room to chop off 4 bytes,
-
* and that the end alignment will work out to
-
* this hardware's requirements
-
* NOTE: this is a TSO only workaround
-
* if end byte alignment not correct move us
-
* into the next dword */
-
if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
-
break;
-
/* fall through */
-
pull_size = min((unsigned int)4, skb->data_len);
-
if (!__pskb_pull_tail(skb, pull_size)) {
-
e_err(drv, "__pskb_pull_tail "
-
"failed.\n");
-
dev_kfree_skb_any(skb);
-
return NETDEV_TX_OK;
-
}
-
len = skb_headlen(skb);
-
break;
-
default:
-
/* do nothing */
-
break;
-
}
-
}
-
}
-
-
/* reserve a descriptor for the offload context */
-
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
-
count++;
-
count++;
-
-
/* Controller Erratum workaround */
-
if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
-
count++;
-
-
count += TXD_USE_COUNT(len, max_txd_pwr);
-
-
if (adapter->pcix_82544)
-
count++;
-
-
/* work-around for errata 10 and it applies to all controllers
-
* in PCI-X mode, so add one more descriptor to the count
-
*/
-
if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
-
(len > 2015)))
-
count++;
-
-
nr_frags = skb_shinfo(skb)->nr_frags;
-
for (f = 0; f < nr_frags; f++)
-
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
-
max_txd_pwr);
-
if (adapter->pcix_82544)
-
count += nr_frags;
-
-
/* need: count + 2 desc gap to keep tail from touching
-
* head, otherwise try next time */
-
if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
-
return NETDEV_TX_BUSY;
-
-
if (unlikely((hw->mac_type == e1000_82547) &&
-
(e1000_82547_fifo_workaround(adapter, skb)))) {
-
netif_stop_queue(netdev);
-
if (!test_bit(__E1000_DOWN, &adapter->flags))
-
schedule_delayed_work(&adapter->fifo_stall_task, 1);
-
return NETDEV_TX_BUSY;
-
}
-
-
if (vlan_tx_tag_present(skb)) {
-
tx_flags |= E1000_TX_FLAGS_VLAN;
-
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
-
}
-
-
first = tx_ring->next_to_use;
-
-
tso = e1000_tso(adapter, tx_ring, skb);
-
if (tso < 0) {
-
dev_kfree_skb_any(skb);
-
return NETDEV_TX_OK;
-
}
-
-
if (likely(tso)) {
-
if (likely(hw->mac_type != e1000_82544))
-
tx_ring->last_tx_tso = true;
-
tx_flags |= E1000_TX_FLAGS_TSO;
-
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
-
tx_flags |= E1000_TX_FLAGS_CSUM;
-
-
if (likely(skb->protocol == htons(ETH_P_IP)))
-
tx_flags |= E1000_TX_FLAGS_IPV4;
-
-
if (unlikely(skb->no_fcs))
-
tx_flags |= E1000_TX_FLAGS_NO_FCS;
-
-
count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
-
nr_frags, mss);
-
-
if (count) {
-
netdev_sent_queue(netdev, skb->len);
-
skb_tx_timestamp(skb);
-
-
e1000_tx_queue(adapter, tx_ring, tx_flags, count);
-
/* Make sure there is space in the ring for the next send. */
-
e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
-
-
} else {
-
dev_kfree_skb_any(skb);
-
tx_ring->buffer_info[first].time_stamp = 0;
-
tx_ring->next_to_use = first;
-
}
-
-
return NETDEV_TX_OK;
-
}
经过上次,邻居子系统后,数据帧已经到达驱动,数据放在skb指定的内存里.
看代码
tx_ring = adapter->tx_ring; // 获取发送的ring buffer
接着我们看关键代码:
count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, nr_frags, mss);
它做了什么呢?
-
static int e1000_tx_map(struct e1000_adapter *adapter,
-
struct e1000_tx_ring *tx_ring,
-
struct sk_buff *skb, unsigned int first,
-
unsigned int max_per_txd, unsigned int nr_frags,
-
unsigned int mss)
-
{
-
struct e1000_hw *hw = &adapter->hw;
-
struct pci_dev *pdev = adapter->pdev;
-
struct e1000_buffer *buffer_info;
-
unsigned int len = skb_headlen(skb);
-
unsigned int offset = 0, size, count = 0, i;
-
unsigned int f, bytecount, segs;
-
-
i = tx_ring->next_to_use;
-
-
while (len) {
-
buffer_info = &tx_ring->buffer_info[i];
-
size = min(len, max_per_txd);
-
/* Workaround for Controller erratum --
-
* descriptor for non-tso packet in a linear SKB that follows a
-
* tso gets written back prematurely before the data is fully
-
* DMA'd to the controller */
-
if (!skb->data_len && tx_ring->last_tx_tso &&
-
!skb_is_gso(skb)) {
-
tx_ring->last_tx_tso = false;
-
size -= 4;
-
}
-
-
/* Workaround for premature desc write-backs
-
* in TSO mode. Append 4-byte sentinel desc */
-
if (unlikely(mss && !nr_frags && size == len && size > 8))
-
size -= 4;
-
/* work-around for errata 10 and it applies
-
* to all controllers in PCI-X mode
-
* The fix is to make sure that the first descriptor of a
-
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
-
*/
-
if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
-
(size > 2015) && count == 0))
-
size = 2015;
-
-
/* Workaround for potential 82544 hang in PCI-X. Avoid
-
* terminating buffers within evenly-aligned dwords. */
-
if (unlikely(adapter->pcix_82544 &&
-
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
-
size > 4))
-
size -= 4;
-
-
buffer_info->length = size;
-
/* set time_stamp *before* dma to help avoid a possible race */
-
buffer_info->time_stamp = jiffies;
-
buffer_info->mapped_as_page = false;
-
buffer_info->dma = dma_map_single(&pdev->dev,
-
skb->data + offset,
-
size, DMA_TO_DEVICE);
-
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
-
goto dma_error;
-
buffer_info->next_to_watch = i;
-
-
len -= size;
-
offset += size;
-
count++;
-
if (len) {
-
i++;
-
if (unlikely(i == tx_ring->count))
-
i = 0;
-
}
-
}
-
-
for (f = 0; f < nr_frags; f++) {
-
const struct skb_frag_struct *frag;
-
-
frag = &skb_shinfo(skb)->frags[f];
-
len = skb_frag_size(frag);
-
offset = 0;
-
-
while (len) {
-
unsigned long bufend;
-
i++;
-
if (unlikely(i == tx_ring->count))
-
i = 0;
-
-
buffer_info = &tx_ring->buffer_info[i];
-
size = min(len, max_per_txd);
-
/* Workaround for premature desc write-backs
-
* in TSO mode. Append 4-byte sentinel desc */
-
if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
-
size -= 4;
-
/* Workaround for potential 82544 hang in PCI-X.
-
* Avoid terminating buffers within evenly-aligned
-
* dwords. */
-
bufend = (unsigned long)
-
page_to_phys(skb_frag_page(frag));
-
bufend += offset + size - 1;
-
if (unlikely(adapter->pcix_82544 &&
-
!(bufend & 4) &&
-
size > 4))
-
size -= 4;
-
-
buffer_info->length = size;
-
buffer_info->time_stamp = jiffies;
-
buffer_info->mapped_as_page = true;
-
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
-
offset, size, DMA_TO_DEVICE);
-
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
-
goto dma_error;
-
buffer_info->next_to_watch = i;
-
-
len -= size;
-
offset += size;
-
count++;
-
}
-
}
-
-
segs = skb_shinfo(skb)->gso_segs ?: 1;
-
/* multiply data chunks by size of headers */
-
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
-
-
tx_ring->buffer_info[i].skb = skb;
-
tx_ring->buffer_info[i].segs = segs;
-
tx_ring->buffer_info[i].bytecount = bytecount;
-
tx_ring->buffer_info[first].next_to_watch = i;
-
-
return count;
-
-
dma_error:
-
dev_err(&pdev->dev, "TX DMA map failed\n");
-
buffer_info->dma = 0;
-
if (count)
-
count--;
-
-
while (count--) {
-
if (i==0)
-
i += tx_ring->count;
-
i--;
-
buffer_info = &tx_ring->buffer_info[i];
-
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
-
}
-
-
return 0;
-
}
默认数据报文没有分片或者碎片什么的。
那么进入第一个while(len)
获取buffer_info = &tx_ring->buffer_info[i];
然后:调用dma_map_single进行流式映射. 即把skb->data(虚拟地址) 和buffer_info->dma(物理地址)对应起来.操作两个地址等于操作同一片区域。
-
buffer_info->length = size;
-
/* set time_stamp *before* dma to help avoid a possible race */
-
buffer_info->time_stamp = jiffies;
-
buffer_info->mapped_as_page = false;
-
buffer_info->dma = dma_map_single(&pdev->dev,
-
skb->data + offset,
-
size, DMA_TO_DEVICE);
回到主发送函数:
-
if (count) {
-
netdev_sent_queue(netdev, skb->len);
-
skb_tx_timestamp(skb);
-
-
e1000_tx_queue(adapter, tx_ring, tx_flags, count);
-
/* Make sure there is space in the ring for the next send. */
-
e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
-
-
}
调用e1000_tx_queue把数据发送出去:
-
static void e1000_tx_queue(struct e1000_adapter *adapter,
-
struct e1000_tx_ring *tx_ring, int tx_flags,
-
int count)
-
{
-
struct e1000_hw *hw = &adapter->hw;
-
struct e1000_tx_desc *tx_desc = NULL;
-
struct e1000_buffer *buffer_info;
-
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
-
unsigned int i;
-
-
...
-
-
i = tx_ring->next_to_use;
-
-
while (count--) {
-
buffer_info = &tx_ring->buffer_info[i];
-
tx_desc = E1000_TX_DESC(*tx_ring, i);
-
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
tx_desc->lower.data =
-
cpu_to_le32(txd_lower | buffer_info->length);
-
tx_desc->upper.data = cpu_to_le32(txd_upper);
-
if (unlikely(++i == tx_ring->count)) i = 0;
-
}
-
-
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
-
-
/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
-
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
-
tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
-
-
/* Force memory writes to complete before letting h/w
-
* know there are new descriptors to fetch. (Only
-
* applicable for weak-ordered memory model archs,
-
* such as IA-64). */
-
wmb();
-
-
tx_ring->next_to_use = i;
-
writel(i, hw->hw_addr + tx_ring->tdt);
-
/* we need this if more than one processor can write to our tail
-
* at a time, it syncronizes IO on IA64/Altix systems */
-
mmiowb();
-
}
我们看到它把刚才dma_map_singe里的映射赋值了:
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
说明发送的时候是根据发送描述符来发送的。
然后操作寄存器:
writel(i, hw->hw_addr + tx_ring->tdt);
那么网卡就会自动读取tx desc 然后把数据发送出去。
总结下流程:
1. linux os会调用网卡的start_xmit()函数。在e1000里,对应的函数是 e1000_xmit_frame,
2. e1000_xmit_frame又会调用e1000_tx_queue(adapter, tx_ring, tx_flags, count)。
这里的tx_queue指的是发送Descriptor的queue。
3. e1000_tx_queue 在检查了一些参数后,最终调用 writel(i, hw->hw_addr + tx_ring->tdt)。
这里的tx_ring->tdt中的tdt全写为 tx_descriptor_tail。从网卡的开发手册中可以查到,如果写了descriptor tail,那么网卡就会自动读取 descriptor,然后把包发送出去。
descroptor的主要内容是addr pointer和length。前者是要发送的包的起始物理地址。后者是包的长度。有了这些,硬件就可以通过dma来读取包并发出去了。其他网卡也基本会用descriptor的结构。
虽然流程明白了,但是还有几个点,
1. tx_ring在哪初始化?
2. 网卡到底是如何操作映射的dma地址的,把数据发送出去的?
tx ring 在e1000_open 的时候:
调用:
-
/**
-
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
-
* (Descriptors) for all queues
-
* @adapter: board private structure
-
*
-
* Return 0 on success, negative on failure
-
**/
-
-
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
-
{
-
int i, err = 0;
-
-
for (i = 0; i < adapter->num_tx_queues; i++) {
-
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
-
if (err) {
-
e_err(probe, "Allocation for Tx Queue %u failed\n", i);
-
for (i-- ; i >= 0; i--)
-
e1000_free_tx_resources(adapter,
-
&adapter->tx_ring[i]);
-
break;
-
}
-
}
-
-
return err;
-
}
-
/**
-
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
-
* @adapter: board private structure
-
* @txdr: tx descriptor ring (for a specific queue) to setup
-
*
-
* Return 0 on success, negative on failure
-
**/
-
-
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
-
struct e1000_tx_ring *txdr)
-
{
-
struct pci_dev *pdev = adapter->pdev;
-
int size;
-
-
size = sizeof(struct e1000_buffer) * txdr->count;
-
txdr->buffer_info = vzalloc(size);
-
if (!txdr->buffer_info) {
-
e_err(probe, "Unable to allocate memory for the Tx descriptor "
-
"ring\n");
-
return -ENOMEM;
-
}
-
-
/* round up to nearest 4K */
-
-
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
-
txdr->size = ALIGN(txdr->size, 4096);
-
-
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
-
GFP_KERNEL);
-
if (!txdr->desc) {
-
setup_tx_desc_die:
-
vfree(txdr->buffer_info);
-
e_err(probe, "Unable to allocate memory for the Tx descriptor "
-
"ring\n");
-
return -ENOMEM;
-
}
-
-
/* Fix for errata 23, can't cross 64kB boundary */
-
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
-
void *olddesc = txdr->desc;
-
dma_addr_t olddma = txdr->dma;
-
e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
-
txdr->size, txdr->desc);
-
/* Try again, without freeing the previous */
-
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
-
&txdr->dma, GFP_KERNEL);
-
/* Failed allocation, critical failure */
-
if (!txdr->desc) {
-
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
-
olddma);
-
goto setup_tx_desc_die;
-
}
-
-
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
-
/* give up */
-
dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
-
txdr->dma);
-
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
-
olddma);
-
e_err(probe, "Unable to allocate aligned memory "
-
"for the transmit descriptor ring\n");
-
vfree(txdr->buffer_info);
-
return -ENOMEM;
-
} else {
-
/* Free old allocation, new allocation was successful */
-
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
-
olddma);
-
}
-
}
-
memset(txdr->desc, 0, txdr->size);
-
-
txdr->next_to_use = 0;
-
txdr->next_to_clean = 0;
-
-
return 0;
-
}
我们看:它建立了一致性dma映射.
-
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
-
&txdr->dma, GFP_KERNEL);
desc是结构指针:它的结构跟网卡寄存器结构有关,e1000_hw.h
-
/* Transmit Descriptor */
-
struct e1000_tx_desc {
-
__le64 buffer_addr; /* Address of the descriptor's data buffer */
-
union {
-
__le32 data;
-
struct {
-
__le16 length; /* Data buffer length */
-
u8 cso; /* Checksum offset */
-
u8 cmd; /* Descriptor control */
-
} flags;
-
} lower;
-
union {
-
__le32 data;
-
struct {
-
u8 status; /* Descriptor status */
-
u8 css; /* Checksum start */
-
__le16 special;
-
} fields;
-
} upper;
-
}
我们稍微屡一下,
1. skb->data --- ring->buffer_info->dma
2.ring->dma --- ring->desc
3. ring->desc->buffer_addr ---ring->buffer_info->dma
那么网卡又是如何和dma地址关联的呢?
-
/**
-
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
-
* @adapter: board private structure
-
*
-
* Configure the Tx unit of the MAC after a reset.
-
**/
-
-
static void e1000_configure_tx(struct e1000_adapter *adapter)
-
{
-
u64 tdba;
-
struct e1000_hw *hw = &adapter->hw;
-
u32 tdlen, tctl, tipg;
-
u32 ipgr1, ipgr2;
-
-
/* Setup the HW Tx Head and Tail descriptor pointers */
-
-
switch (adapter->num_tx_queues) {
-
case 1:
-
default:
-
tdba = adapter->tx_ring[0].dma;
-
tdlen = adapter->tx_ring[0].count *
-
sizeof(struct e1000_tx_desc);
-
ew32(TDLEN, tdlen);
-
ew32(TDBAH, (tdba >> 32));
-
ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
-
ew32(TDT, 0);
-
ew32(TDH, 0);
-
adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
-
adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
-
break;
-
}
很明显它把dma地址写入了网卡dma寄存器。所以dma还需要网卡硬件的支持才行.
当然e1000这个网卡驱动还是相当的复杂,不过它把一致性映射和流式映射都用上了。
阅读(1309) | 评论(0) | 转发(0) |