分类: C/C++
2014-11-06 17:06:05
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE 1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。
epoll的接口非常简单,一共就三个函数:
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。
第一个参数是epoll_create()的返回值,
第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,
第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
typedef union epoll_data
{
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
events可以是以下几个宏的集合:
EPOLLIN : 表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT: 表示对应的文件描述符可以写;
EPOLLPRI: 表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR: 表示对应的文件描述符发生错误;
EPOLLHUP: 表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT: 只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
从man手册中,得到ET和LT的具体描述如下
Edge Triggered (ET) 边缘触发 只有数据到来,才触发,不管缓存区中是否还有数据。
Level Triggered
(LT) 水平触发 只要有数据都会触发。
假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
i 基于非阻塞文件句柄
ii 只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。
然后详细解释ET, LT:
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.
ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。
在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)
另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:
while(rs)
{
buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
if(buflen < 0)
{
// 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
// 在这里就当作是该次事件已处理处.
if(errno == EAGAIN)
break;
else
return;
}
else if(buflen == 0)
{
// 这里表示对端的socket已正常关闭.
}
if(buflen == sizeof(buf)
rs = 1; // 需要再次读取
else
rs = 0;
}
还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.
ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
ssize_t tmp;
size_t total = buflen;
const char *p = buffer;
while(1)
{
tmp = send(sockfd, p, total, 0);
if(tmp < 0)
{
// 当send收到信号时,可以继续写,但这里返回-1.
if(errno == EINTR)
return -1;
// 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
// 在这里做延时后再重试.
if(errno == EAGAIN)
{
usleep(1000);
continue;
}
return -1;
}
if((size_t)tmp == total)
return buflen;
total -= tmp;
p += tmp;
}
return tmp;
}
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAXLINE 10
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5555
#define INFTIM 1000
//线程池任务队列结构体
struct task
{
int fd; //需要读写的文件描述符
struct task *next; //下一个任务
};
//用于读写两个的两个方面传递参数
struct user_data
{
int fd;
unsigned int n_size;
char line[MAXLINE];
};
//线程的任务函数
void * readtask(void *args);
void * writetask(void *args);
//声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
struct epoll_event ev, events[20];
int epfd;
pthread_mutex_t mutex;
pthread_cond_t cond1;
struct task *readhead = NULL, *readtail = NULL, *writehead = NULL;
void setnonblocking(int sock)
{
int opts;
opts = fcntl(sock, F_GETFL);
if (opts < 0)
{
perror("fcntl(sock,GETFL)");
exit(1);
}
opts = opts | O_NONBLOCK;
if (fcntl(sock, F_SETFL, opts) < 0)
{
perror("fcntl(sock,SETFL,opts)");
exit(1);
}
}
int main()
{
int i, maxi, listenfd, connfd, sockfd, nfds;
pthread_t tid1, tid2;
struct task *new_task = NULL;
struct user_data *rdata = NULL;
socklen_t clilen;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond1, NULL);
//初始化用于读线程池的线程
pthread_create(&tid1, NULL, readtask, NULL);
pthread_create(&tid2, NULL, readtask, NULL);
//生成用于处理accept的epoll专用的文件描述符
epfd = epoll_create(256);
struct sockaddr_in clientaddr;
struct sockaddr_in serveraddr;
listenfd = socket(AF_INET, SOCK_STREAM, 0);
//把socket设置为非阻塞方式
setnonblocking(listenfd);
//设置与要处理的事件相关的文件描述符
ev.data.fd = listenfd;
//设置要处理的事件类型
ev.events = EPOLLIN | EPOLLET;
//注册epoll事件
epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);
bzero(&serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
char *local_addr = "200.200.200.222";
inet_aton(local_addr, &(serveraddr.sin_addr));//htons(SERV_PORT);
serveraddr.sin_port = htons(SERV_PORT);
bind(listenfd, (sockaddr *) &serveraddr, sizeof(serveraddr));
listen(listenfd, LISTENQ);
maxi = 0;
for (;;)
{
//等待epoll事件的发生
nfds = epoll_wait(epfd, events, 20, 500);
//处理所发生的所有事件
for (i = 0; i < nfds; ++i)
{
if (events[i].data.fd == listenfd)
{
connfd = accept(listenfd, (sockaddr *) &clientaddr, &clilen);
if (connfd < 0)
{
perror("connfd<0");
exit(1);
}
setnonblocking(connfd);
char *str = inet_ntoa(clientaddr.sin_addr);
std::cout << "connec_ from >>" << str << std::endl;
//设置用于读操作的文件描述符
ev.data.fd = connfd;
//设置用于注测的读操作事件
ev.events = EPOLLIN | EPOLLET;
//注册ev
epoll_ctl(epfd, EPOLL_CTL_ADD, connfd, &ev);
} else if (events[i].events & EPOLLIN)
{
printf("reading!\n");
if ((sockfd = events[i].data.fd) < 0) continue;
new_task = new task();
new_task->fd = sockfd;
new_task->next = NULL;
//添加新的读任务
pthread_mutex_lock(&mutex);
if (readhead == NULL)
{
readhead = new_task;
readtail = new_task;
} else
{
readtail->next = new_task;
readtail = new_task;
}
//唤醒所有等待cond1条件的线程
pthread_cond_broadcast(&cond1);
pthread_mutex_unlock(&mutex);
} else
if (events[i].events & EPOLLOUT)
{
rdata = (struct user_data *) events[i].data.ptr;
sockfd = rdata->fd;
write(sockfd, rdata->line, rdata->n_size);
delete rdata;
//设置用于读操作的文件描述符
ev.data.fd = sockfd;
//设置用于注测的读操作事件
ev.events = EPOLLIN | EPOLLET;
//修改sockfd上要处理的事件为EPOLIN
epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
}
}
}
}
void * readtask(void *args)
{
int fd = -1;
unsigned int n;
//用于把读出来的数据传递出去
struct user_data *data = NULL;
while (1)
{
pthread_mutex_lock(&mutex);
//等待到任务队列不为空
while (readhead == NULL)
pthread_cond_wait(&cond1, &mutex);
fd = readhead->fd;
//从任务队列取出一个读任务
struct task *tmp = readhead;
readhead = readhead->next;
delete tmp;
pthread_mutex_unlock(&mutex);
data = new user_data();
data->fd = fd;
if ((n = read(fd, data->line, MAXLINE)) < 0)
{
if (errno == ECONNRESET)
{
close(fd);
} else
std::cout << "readline error" << std::endl;
if (data != NULL) delete data;
} else
if (n == 0)
{
close(fd);
printf("Client close connect!\n");
if (data != NULL) delete data;
} else
{
data->n_size = n;
//设置需要传递出去的数据
ev.data.ptr = data;
//设置用于注测的写操作事件
ev.events = EPOLLOUT | EPOLLET;
//修改sockfd上要处理的事件为EPOLLOUT
epoll_ctl(epfd, EPOLL_CTL_MOD, fd, &ev);
}
}
}
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAXLINE 1024
#define OPEN_MAX 100
#define EPOLL_SIZE 256
#define LISTENQ 20
#define SERV_PORT 5555
#define SERV_IP "127.0.0.1"
#define INFIM 1000
//ev用于注册事件, 数组用于回传要处理的事件
struct epoll_event ev, events[20];
struct user_data_s
{
int fd;
char data[MAXLINE];
int n_size;
};
typedef struct user_data_s user_data_t;
int set_nonblock(int fd)
{
return fcntl(fd, F_SETFL, fcntl( fd, F_GETFL)|O_NONBLOCK);
}
user_data_t * rdata;
int main(int argc, char **argv)
{
int i, n;
int epfd, listenfd, nfds, connfd, sockfd;
socklen_t clilen;
char cliip[24];
char buf[MAXLINE];
struct sockaddr_in servaddr, cliaddr;
//socket
listenfd = socket(AF_INET, SOCK_STREAM, 0);
//setnonblock
if(set_nonblock(listenfd)==-1)
{
perror("set_nonblock");
return -1;
}
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERV_PORT);
inet_pton(AF_INET, SERV_IP, &servaddr.sin_addr);
//bind
bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));
//listen
listen(listenfd, LISTENQ);
printf("Listening %s %d\n", SERV_IP, SERV_PORT);
//注册epoll事件
epfd = epoll_create(EPOLL_SIZE);
ev.data.fd = listenfd;
ev.events= EPOLLIN | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev);
for(;;)
{
//等待epoll事件的发生
nfds = epoll_wait(epfd, events, 20, 500);
//处理发生的所有事件
for(i=0; i< nfds; i++)
{
//New connection
if(events[i].data.fd == listenfd)
{
clilen = sizeof(cliaddr);
if((connfd = accept(listenfd, (struct sockaddr *)&cliaddr, &clilen))==-1)
{
perror("accept");
continue;
}
if(set_nonblock(connfd)==-1)
{
perror("set_nonblock");
continue;
}
inet_ntop(AF_INET, &cliaddr.sin_addr, cliip, sizeof(cliip));
printf("New connection %s %d\n", cliip, ntohs(cliaddr.sin_port));
ev.data.fd = connfd;
ev.events = EPOLLIN | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_ADD, connfd, &ev);
}
//可读事件
else if(events[i].events & EPOLLIN)
{
printf("reading...\n");
if((sockfd = events[i].data.fd)<0)
continue;
memset(buf, '\0', sizeof(buf));
if((n = read(sockfd, buf, sizeof(buf)))==-1)
{
if(errno==ECONNRESET)
close(sockfd);
else
perror("read");
}
else if( n==0 )
{
close(sockfd);
printf("client close connect!\n");
}
else
{
printf("read->[%s]\n", buf);
user_data_t udata;
udata.fd = sockfd;
memset(udata.data, '\0', sizeof(udata.data));
sprintf(udata.data,"%d", atoi(buf));
udata.n_size = strlen(udata.data);
//注册写事件
ev.data.ptr = &udata;
ev.events = EPOLLOUT | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
}
}
//可写事件
else if(events[i].events & EPOLLOUT)
{
printf("writing...\n");
if(events[i].events & EPOLLOUT)
{
rdata = (user_data_t *)events[i].data.ptr;
sockfd = rdata->fd;
write(sockfd, rdata->data, rdata->n_size);
printf("write->[%s]\n",rdata->data);
//注册读事件
ev.data.fd = sockfd;
ev.events = EPOLLIN | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_MOD, sockfd, &ev);
}
}
}
}
return 0;
}