Chinaunix首页 | 论坛 | 博客
  • 博客访问: 344268
  • 博文数量: 108
  • 博客积分: 0
  • 博客等级: 民兵
  • 技术积分: 65
  • 用 户 组: 普通用户
  • 注册时间: 2013-12-16 11:38
文章分类
文章存档

2016年(2)

2015年(44)

2014年(62)

分类: 嵌入式

2015-07-22 17:09:45

 

ECC的全称是Error Checking and Correction,是一种用于Nand的差错检测和修正算法。如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。ECC能纠正1个比特错误和检测2个比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。

校验码生成算法:ECC校验每次对256字节的数据进行操作,包含列校验和行校验。对每个待校验的Bit位求异或,若结果为0,则表明含有偶数个1;若结果为1,则表明含有奇数个1。列校验规则如表1所示。256字节数据形成256行、8列的矩阵,矩阵每个元素表示一个Bit位。

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

其中CP0 ~ CP5 为六个Bit位,表示Column Parity(列极性),

CP0为第0、2、4、6列的极性,CP1为第1、3、5、7列的极性,

CP2为第0、1、4、5列的极性,CP3为第2、3、6、7列的极性,

CP4为第0、1、2、3列的极性,CP5为第4、5、6、7列的极性。

用公式表示就是:CP0=Bit0^Bit2^Bit4^Bit6, 表示第0列内部256个Bit位异或之后再跟第2列256个Bit位异或,再跟第4列、第6列的每个Bit位异或,这样,CP0其实是256*4=1024个Bit位异或的结果。CP1 ~ CP5 依此类推。

行校验如下图所示

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

其中RP0 ~ RP15 为十六个Bit位,表示Row Parity(行极性),

RP0为第0、2、4、6、….252、254 个字节的极性

RP1-----1、3、5、7……253、255

RP2----0、1、4、5、8、9…..252、253 (处理2个Byte,跳过2个Byte)

RP3---- 2、3、6、7、10、11…..254、255 (跳过2个Byte,处理2个Byte)

RP4---- 处理4个Byte,跳过4个Byte;

RP5---- 跳过4个Byte,处理4个Byte;

RP6---- 处理8个Byte,跳过8个Byte

RP7---- 跳过8个Byte,处理8个Byte;

RP8---- 处理16个Byte,跳过16个Byte

RP9---- 跳过16个Byte,处理16个Byte;

RP10----处理32个Byte,跳过32个Byte

RP11----跳过32个Byte,处理32个Byte;

RP12----处理64个Byte,跳过64个Byte

RP13----跳过64个Byte,处理64个Byte;

RP14----处理128个Byte,跳过128个Byte

RP15----跳过128个Byte,处理128个Byte;

可见,RP0 ~ RP15 每个Bit位都是128个字节(也就是128行)即128*8=1024个Bit位求异或的结果。

综上所述,对256字节的数据共生成了6个Bit的列校验结果,16个Bit的行校验结果,共22个Bit。在Nand中使用3个字节存放校验结果,多余的两个Bit位置1。存放次序如下表所示:

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

以K9F1208为例,每个Page页包含512字节的数据区和16字节的OOB区。前256字节数据生成3字节ECC校验码,后256字节数据生成3字节ECC校验码,共6字节ECC校验码存放在OOB区中,存放的位置为OOB区的第0、1、2和3、6、7字节。

 

校验码生成算法的C语言实现

在Linux内核中ECC校验算法所在的文件为drivers/mtd/nand/nand_ecc.c,其实现有新、旧两种,在2.6.27及更早的内核中使用的程序,从2.6.28开始已经不再使用,而换成了效率更高的程序。可以在Documentation/mtd/nand_ecc.txt 文件中找到对新程序的详细介绍。

首先分析一下2.6.27内核中的ECC实现,源代码见:

43/*

44 * Pre-calculated 256-way 1 byte column parity

45 */

46static const 

[] = {

47   0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,

48   0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,

49   0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,

50   0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,

51   0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,

52   0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,

53   0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,

54   0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,

55   0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,

56   0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,

57   0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,

58   0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,

59   0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,

60   0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,

61   0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,

62

0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00

63};

为了加快计算速度,程序中使用了一个预先计算好的列极性表。这个表中每一个元素都是unsigned char类型,表示8位二进制数。

表中8位二进制数每位的含义:

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

这个表的意思是:对0~255这256个数,计算并存储每个数的列校验值和行校验值,以数作数组下标。比如 nand_ecc_precalc_table[ 13 ]  存储13的列校验值和行校验值,13的二进制表示为 00001101, 其CP0 = Bit0^Bit2^Bit4^Bit6 = 0;

CP1 = Bit1^Bit3^Bit5^Bit7 = 1;

CP2 = Bit0^Bit1^Bit4^Bit5 = 1;

CP3 = Bit2^Bit3^Bit6^Bit7 = 0;

CP4 = Bit0^Bit1^Bit2^Bit3 = 1;

CP5 = Bit4^Bit5^Bit6^Bit7 = 0;

其行极性RP = Bit0^Bit1^Bit2^Bit3^Bit4^Bit5^Bit6^Bit7 = 1;

则nand_ecc_precalc_table[ 13 ] 处存储的值应该是 0101 0110,即0x56.

注意,数组nand_ecc_precalc_table的下标其实是我们要校验的一个字节数据。

(这句话最重要,立刻明白了怎么回事,网上其它人写的ECC算法都是来回抄,好多都抄错了,弄得我不知所云,晕头转向。)

理解了这个表的含义,也就很容易写个程序生成这个表了。程序见附件中的 MakeEccTable.c文件。

有了这个表,对单字节数据dat,可以直接查表 nand_ecc_precalc_table[ dat ] 得到 dat的行校验值和列校验值。 但是ECC实际要校验的是256字节的数据,需要进行256次查表,对得到的256个查表结果进行按位异或,最终结果的 Bit0 ~ Bit5 即是256字节数据的 CP0 ~ CP5.

/* Build up column parity */

  81        for( = 0;  < 256; ++) {

  82

/* Get CP0 - CP5 from table */

  83

 = [*++];

  84

 ^= ( & 0x3f);

  85

  86            //这里省略了一些,后面会介绍

  91        }

Reg1

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

在这里,计算列极性的过程其实是先在一个字节数据的内部计算CP0 ~ CP5, 每个字节都计算完后再与其它字节的计算结果求异或。而表1中是先对一列Bit0求异或,再去异或一列Bit2。 这两种只是计算顺序不同,结果是一致的。 因为异或运算的顺序是可交换的。

行极性的计算要复杂一些。

nand_ecc_precalc_table[] 表中的 Bit6 已经保存了每个单字节数的行极性值。对于待校验的256字节数据,分别查表,如果其行极性为1,则记录该数据所在的行索引(也就是for循环的i值),这里的行索引是很重要的,因为RP0 ~ RP15 的计算都是跟行索引紧密相关的,如RP0只计算偶数行,RP1只计算奇数行,等等。

/* Build up column parity */

  81        for( = 0;  < 256; ++) {

  82

/* Get CP0 - CP5 from table */

  83

 = [*++];

  84

 ^= ( & 0x3f);

  85

  86

/* All bit XOR = 1 ? */

  87                if ( & 0x40) {

  88

 ^= () ;

  89

 ^= ~(() );

  90                }

  91        }

这里的关键是理解第88和89行。Reg3和reg2都是unsigned char 型的变量,并都初始化为零。

行索引(也就是for循环里的i)的取值范围为0~255,根据表2可以得出以下规律:

RP0只计算行索引的Bit0为0的行,RP1只计算行索引的Bit0为1的行;

RP2只计算行索引的Bit1为0的行,RP3只计算行索引的Bit1为1的行;

RP4只计算行索引的Bit2为0的行,RP5只计算行索引的Bit2为1的行;

RP6只计算行索引的Bit3为0的行,RP7只计算行索引的Bit3为1的行;

RP8只计算行索引的Bit4为0的行,RP9只计算行索引的Bit4为1的行;

RP10只计算行索引的Bit5为0的行,RP11只计算行索引的Bit5为1的行;

RP12只计算行索引的Bit6为0的行,RP13只计算行索引的Bit6为1的行;

RP14只计算行索引的Bit7为0的行,RP15只计算行索引的Bit7为1的行;

已经知道,异或运算的作用是判断比特位为1的个数,跟比特位为0的个数没有关系。如果有偶数个1则异或的结果为0,如果有奇数个1则异或的结果为1。

那么,程序第88行,对所有行校验为1的行索引按位异或运算,作用便是:

判断在所有行校验为1的行中,

属于RP1计算范围内的行有多少个------由reg3的Bit 0指示,0表示有偶数个,1表示有奇数个;

属于RP3计算范围内的行有多少个------由reg3的Bit 1指示,0表示有偶数个,1表示有奇数个;

属于RP5计算范围内的行有多少个------由reg3的Bit 2指示,0表示有偶数个,1表示有奇数个;

属于RP7计算范围内的行有多少个------由reg3的Bit 3指示,0表示有偶数个,1表示有奇数个;

属于RP9计算范围内的行有多少个------由reg3的Bit 4指示,0表示有偶数个,1表示有奇数个;

属于RP11计算范围内的行有多少个------由reg3的Bit 5指示,0表示有偶数个,1表示有奇数个;

属于RP13计算范围内的行有多少个------由reg3的Bit 6指示,0表示有偶数个,1表示有奇数个;

属于RP15计算范围内的行有多少个------由reg3的Bit 7指示,0表示有偶数个,1表示有奇数个;

所以,reg3每个Bit位的作用如下表所示:

Reg3

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

第89行,对所有行校验为1的行索引按位取反之后,再按位异或,作用就是判断比特位为0的个数。比如reg2的Bit0为0表示:所有行校验为1的行中,行索引的Bit0为0的行有偶数个,也就是落在RP0计算范围内的行有偶数个。所以得到结论:

在所有行校验为1的行中,

属于RP0计算范围内的行有多少个------由reg2的Bit 0指示,0表示有偶数个,1表示有奇数个;

属于RP2计算范围内的行有多少个------由reg2的Bit 1指示,0表示有偶数个,1表示有奇数个;

属于RP4计算范围内的行有多少个------由reg2的Bit 2指示,0表示有偶数个,1表示有奇数个;

属于RP6计算范围内的行有多少个------由reg2的Bit 3指示,0表示有偶数个,1表示有奇数个;

属于RP8计算范围内的行有多少个------由reg2的Bit 4指示,0表示有偶数个,1表示有奇数个;

属于RP10计算范围内的行有多少个------由reg2的Bit 5指示,0表示有偶数个,1表示有奇数个;

属于RP12计算范围内的行有多少个------由reg2的Bit 6指示,0表示有偶数个,1表示有奇数个;

属于RP14计算范围内的行有多少个------由reg2的Bit 7指示,0表示有偶数个,1表示有奇数个;

所以,reg2每个Bit位的作用如下表所示:

Reg2

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

至此,只用了一个查找表和一个for循环,就把所有的校验位CP0 ~ CP5 和RP0 ~ RP15全都计算出来了。下面的任务只是按照表3的格式,把这些比特位重新排列一下顺序而已。

从reg2和reg3中抽取出 RP8~RP15放在tmp1中,抽取出RP0~RP7放在tmp2中,

Reg1左移两位,低两位置1,

然后把tmp2, tmp1, reg1 放在 ECC码的三个字节中。

程序中还有, 又进行了一次取反操作,暂时还不知为何。

ECC纠错算法

当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB(out-of-band)数据区中。当从NAND Flash中读取数据的时候,每256字节我们生成一个ECC校验和,称之为新ECC校验和。

将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了 ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示 OOB区出错;其他情况均表示出现了无法纠正的错误。

假设ecc_code_raw[3] 保存原始的ECC校验码,ecc_code_new[3] 保存新计算出的ECC校验码,其格式如下表所示:

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

对ecc_code_raw[3] 和 ecc_code_new[3] 按位异或,得到的结果三个字节分别保存在s0,s1,s2中,如果s0s1s2中共有11个Bit位为1,则表示出现了一个比特位错误,可以修正。定位出错的比特位的方法是,先确定行地址(即哪个字节出错),再确定列地址(即该字节中的哪一个Bit位出错)。

确定行地址的方法是,设行地址为unsigned char byteoffs,抽取s1中的Bit7,Bit5,Bit3,Bit1,作为 byteoffs的高四位, 抽取s0中的Bit7,Bit5,Bit3,Bit1 作为byteoffs的低四位, 则byteoffs的值就表示出错字节的行地址(范围为0 ~ 255)。

确定列地址的方法是:抽取s2中的Bit7,Bit5,Bit3 作为 bitnum 的低三位,bitnum其余位置0,则bitnum的表示出错Bit位的列地址 (范围为0 ~ 7)。

下面以一个简单的例子探索一下这其中的奥妙。

假设待校验的数据为两个字节,0x45(二进制为0100 0101)和0x38(二进制为0011 1000),其行列校验码如下表所示:

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

从表中可以计算出CP5 ~ CP0的值,列在下表的第一行(原始数据)。假设现在有一个数据位发生变化,0x38变为0x3A,也就是Byte

1的Bit 1由0变成了1,计算得到新的CP5 ~ CP0值放在下表第2行(变化后数据)。新旧校验码求异或的结果放在下表第三行。

可见,当 Bit

1发生变化时,列校验值中只有CP1,CP2,CP4发生了变化,而CP0,CP3,CP5没变化,也就是说6个Bit校验码有一半发生变化,则求异或的结果中有一半为1。同理,行校验求异或的结果也有一半为1。这就是为什么前面说256字节数据中的一个Bit位发生变化时,新旧22Bit校验码求异或的结果中会有11个Bit 位为1。

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

再来看怎么定位出错的Bit位。以列地址为例,若CP5发生变化(异或后的CP5=1),则出错处肯定在 Bit 4 ~ Bit 7中;若CP5无变化(异或后的CP5=0),则出错处在 Bit 0 ~ Bit 3 中,这样就筛选掉了一半的Bit位。剩下的4个Bit位中,再看CP3是否发生变化,又选出2个Bit位。剩下的2Bit位中再看CP1是否发生变化,则最终可定位1个出错的Bit位。下面的树形结构更清晰地展示了这个判决过程:

ECC算法的详细说明 - 还东国 - 还东国的博客screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt='Click here to open new window\nCTRL+Mouse wheel to zoom in/out';}" border=0>

图表 1  出错Bit列地址定位的判决树

注意:图中的CP指的是求异或之后的结果中的CP

为什么只用CP4,CP2,CP0呢?其实这里面包含冗余信息,因为CP5=1则必有CP4=0,CP5=0则必有CP4=1,也就是CP5跟CP4一定相反,同理,CP3跟CP2一定相反,CP1跟CP0一定相反。所以只需要用一半就行了。

这样,我们从异或结果中抽取出CP5,CP3,CP1位,便可定位出错Bit位的列地址。比如上面的例子中CP5/CP3/CP1 = 001,表示Bit 1出错。

同理,行校验RP1发生变化,抽取RP1,可知Byte 1发生变化。这样定位出Byte 1的Bit 0出错。

当数据位256字节时,行校验使用RP0 ~ RP15,抽取异或结果的RP15,RP13,RP11,RP9,RP7,RP5,RP3,RP1位便可定位出哪个Byte出错,再用CP5,CP3,CP1定位哪个Bit出错

阅读(1445) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~