分类: LINUX
2013-09-08 12:27:15
原文地址:ARM Linux启动过程分析 作者:zyhualove
摘
要: 嵌入式 Linux
的可移植性使得我们可以在各种电子产品上看到它的身影。对于不
同体系结构的处理器来说Linux的启动过程也有所不同。本文以S3C2410
ARM处理器为例,
详细分析了系统上电后
bootloader的执行流程及
ARM
Linux的启动过程。
关键词:ARM
Linux bootloader 启动过程
中图分类号:TP316
1.
引 言
Linux
最初是由瑞典赫尔辛基大学的学生 Linus
Torvalds在1991
年开发出来的,之后在
GNU的支持下,Linux
获得了巨大的发展。虽然 Linux
在桌面 PC
机上的普及程度远不及微
软的
Windows
操作系统,但它的发展速度之快、用户数量的日益增多,也是微软所不能轻
视的。而近些年来
Linux
在嵌入式领域的迅猛发展,更是给 Linux
注入了新的活力。
一个嵌入式
Linux
系统从软件角度看可以分为四个部分[1]
:引导加载程序(bootloader),
Linux
内核,文件系统,应用程序。
其中
bootloader是系统启动或复位以后执行的第一段代码,它主要用来初始化处理器及
外设,然后调用
Linux
内核。Linux
内核在完成系统的初始化之后需要挂载某个文件系统做
为根文件系统(Root
Filesystem)。根文件系统是 Linux
系统的核心组成部分,它可以做为
Linux
系统中文件和数据的存储区域,通常它还包括系统配置文件和运行应用软件所需要的
库。应用程序可以说是嵌入式系统的“灵魂”,它所实现的功能通常就是设计该嵌入式系统
所要达到的目标。如果没有应用程序的支持,任何硬件上设计精良的嵌入式系统都没有实用
意义。
从以上分析我们可以看出
bootloader
和 Linux
内核在嵌入式系统中的关系和作用。
Bootloader在运行过程中虽然具有初始化系统和执行用户输入的命令等作用,但它最根本的
功能就是为了启动
Linux
内核。在嵌入式系统开发的过程中,很大一部分精力都是花在
bootloader
和 Linux
内核的开发或移植上。如果能清楚的了解
bootloader
执行流程和 Linux
的启动过程,将有助于明确开发过程中所需的工作,从而加速嵌入式系统的开发过程。而这
正是本文的所要研究的内容。
2.
Bootloader
2.1
Bootloader的概念和作用
Bootloader是嵌入式系统的引导加载程序,它是系统上电后运行的第一段程序,其作用
类似于
PC
机上的 BIOS。在完成对系统的初始化任务之后,它会将非易失性存储器(通常
是
Flash或
DOC
等)中的Linux
内核拷贝到 RAM
中去,然后跳转到内核的第一条指令处继
续执行,从而启动
Linux
内核。
由此可见,bootloader
和 Linux
内核有着密不可分的联系,要想清楚的了解
Linux内核
的启动过程,我们必须先得认识
bootloader的执行过程,这样才能对嵌入式系统的整个启动
过程有清晰的掌握。
2.2
Bootloader的执行过程
不同的处理器上电或复位后执行的第一条指令地址并不相同,对于
ARM
处理器来说,
该地址为
0x00000000。对于一般的嵌入式系统,通常把
Flash
等非易失性存储器映射到这个
地址处,而
bootloader就位于该存储器的最前端,所以系统上电或复位后执行的第一段程序
便是
bootloader。而因为存储
bootloader的存储器不同,bootloader的执行过程也并不相同,
下面将具体分析。
嵌入式系统中广泛采用的非易失性存储器通常是
Flash,而
Flash
又分为 Nor
Flash 和
Nand
Flash 两种。 它们之间的不同在于: Nor
Flash 支持芯片内执行(XIP,
eXecute
In Place),
这样代码可以在Flash上直接执行而不必拷贝到RAM中去执行。而Nand
Flash并不支持XIP,
所以要想执行
Nand
Flash 上的代码,必须先将其拷贝到
RAM中去,然后跳到
RAM
中去执
行。
实际应用中的
bootloader根据所需功能的不同可以设计得很复杂,除完成基本的初始化
系统和调用
Linux
内核等基本任务外,还可以执行很多用户输入的命令,比如设置
Linux
启
动参数,给
Flash
分区等;也可以设计得很简单,只完成最基本的功能。但为了能达到启动
Linux
内核的目的,所有的 bootloader都必须具备以下功能[2]
:
1)
初始化 RAM
因为 Linux
内核一般都会在 RAM
中运行,所以在调用 Linux
内核之前 bootloader
必须
设置和初始化
RAM,为调用
Linux内核做好准备。初始化
RAM
的任务包括设置 CPU
的控
制寄存器参数,以便能正常使用
RAM
以及检测RAM
大小等。
2)
初始化串口
串口在
Linux
的启动过程中有着非常重要的作用,它是
Linux内核和用户交互的方式之
一。Linux
在启动过程中可以将信息通过串口输出,这样便可清楚的了解
Linux
的启动过程。
虽然它并不是
bootloader
必须要完成的工作,但是通过串口输出信息是调试
bootloader
和
Linux
内核的强有力的工具,所以一般的
bootloader
都会在执行过程中初始化一个串口做为
调试端口。
3)
检测处理器类型
Bootloader在调用
Linux内核前必须检测系统的处理器类型,并将其保存到某个常量中
提供给
Linux
内核。Linux
内核在启动过程中会根据该处理器类型调用相应的初始化程序。
4)
设置 Linux启动参数
Bootloader在执行过程中必须设置和初始化
Linux
的内核启动参数。目前传递启动参数
主要采用两种方式:即通过
struct
param_struct 和struct
tag(标记列表,tagged
list)两种结
构传递。struct
param_struct 是一种比较老的参数传递方式,在
2.4
版本以前的内核中使用较
多。从
2.4
版本以后 Linux
内核基本上采用标记列表的方式。但为了保持和以前版本的兼容
性,它仍支持
struct
param_struct 参数传递方式,只不过在内核启动过程中它将被转换成标
记列表方式。
标记列表方式是种比较新的参数传递方式,它必须以
ATAG_CORE
开始,并以
ATAG_NONE
结尾。中间可以根据需要加入其他列表。Linux内核在启动过程中会根据该启
动参数进行相应的初始化工作。
5)
调用 Linux内核映像
Bootloader完成的最后一项工作便是调用
Linux内核。如果
Linux
内核存放在 Flash
中,
并且可直接在上面运行(这里的
Flash
指 Nor
Flash),那么可直接跳转到内核中去执行。
但由于在
Flash
中执行代码会有种种限制,而且速度也远不及
RAM
快,所以一般的嵌
入式系统都是将
Linux内核拷贝到
RAM
中,然后跳转到 RAM
中去执行。
不论哪种情况,在跳到
Linux
内核执行之前 CUP的寄存器必须满足以下条件:r0=0,
r1=处理器类型,r2=标记列表在
RAM中的地址。
3.
Linux内核的启动过程
在
bootloader将
Linux
内核映像拷贝到 RAM
以后,可以通过下例代码启动 Linux
内核:
call_linux(0,
machine_type, kernel_params_base)。
其中,machine_tpye
是 bootloader检测出来的处理器类型,
kernel_params_base
是启动参
数在
RAM
的地址。通过这种方式将 Linux
启动需要的参数从 bootloader传递到内核。
Linux
内核有两种映像:一种是非压缩内核,叫
Image,另一种是它的压缩版本,叫
zImage。根据内核映像的不同,Linux
内核的启动在开始阶段也有所不同。zImage
是 Image
经过压缩形成的,所以它的大小比
Image
小。但为了能使用 zImage,必须在它的开头加上
解压缩的代码,将
zImage
解压缩之后才能执行,因此它的执行速度比
Image
要慢。但考虑
到嵌入式系统的存储空容量一般比较小,采用
zImage
可以占用较少的存储空间,因此牺牲
一点性能上的代价也是值得的。所以一般的嵌入式系统均采用压缩内核的方式。
对于
ARM
系列处理器来说,zImage
的入口程序即为 arch/arm/boot/compressed/head.S。
它依次完成以下工作:开启
MMU 和
Cache,调用
decompress_kernel()解压内核,最后通过
调用
call_kernel()进入非压缩内核
Image
的启动。下面将具体分析在此之后 Linux
内核的启
动过程。
3.1
Linux内核入口
Linux
非压缩内核的入口位于文件/arch/arm/kernel/head-armv.S
中的 stext
段。该段的基
地址就是压缩内核解压后的跳转地址。如果系统中加载的内核是非压缩的
Image,那么
bootloader将内核从
Flash中拷贝到
RAM
后将直接跳到该地址处,从而启动 Linux
内核。
不同体系结构的
Linux
系统的入口文件是不同的,而且因为该文件与具体体系结构有
关,所以一般均用汇编语言编写[3]
。对基于
ARM
处理的 Linux
系统来说,该文件就是
head-armv.S。该程序通过查找处理器内核类型和处理器类型调用相应的初始化函数,再建
立页表,最后跳转到
start_kernel()函数开始内核的初始化工作。
检测处理器内核类型是在汇编子函数__lookup_processor_type中完成的。通过以下代码
可实现对它的调用:
bl
__lookup_processor_type。
__lookup_processor_type调用结束返回原程序时,会将返回结果保存到寄存器中。其中
r8
保存了页表的标志位,r9
保存了处理器的 ID
号,r10
保存了与处理器相关的 stru
proc_info_list
结构地址。
检测处理器类型是在汇编子函数
__lookup_architecture_type
中完成的。与
__lookup_processor_type类似,它通过代码:“bl
__lookup_processor_type”来实现对它的调
用。该函数返回时,会将返回结构保存在
r5、r6
和 r7
三个寄存器中。其中 r5
保存了 RAM
的起始基地址,r6
保存了 I/O基地址,r7
保存了
I/O的页表偏移地址。
当检测处理器内核和处理器类型结束后,将调用__create_page_tables
子函数来建立页
表,它所要做的工作就是将
RAM
基地址开始的 4M
空间的物理地址映射到 0xC0000000
开
始的虚拟地址处。对笔者的
S3C2410
开发板而言,RAM
连接到物理地址 0x30000000
处,
当调用
__create_page_tables
结束后 0x30000000
~ 0x30400000
物理地址将映射到
0xC0000000~0xC0400000
虚拟地址处。
当所有的初始化结束之后,使用如下代码来跳到
C
程序的入口函数 start_kernel()处,开
始之后的内核初始化工作:
b
SYMBOL_NAME(start_kernel)
3.2
start_kernel函数
start_kernel是所有
Linux
平台进入系统内核初始化后的入口函数,它主要完成剩余的与
硬件平台相关的初始化工作,在进行一系列与内核相关的初始化后,调用第一个用户进程-
init
进程并等待用户进程的执行,这样整个
Linux
内核便启动完毕。该函数所做的具体工作
有[4][5]
:
1)
调用 setup_arch()函数进行与体系结构相关的第一个初始化工作;
对不同的体系结构来说该函数有不同的定义。对于
ARM
平台而言,该函数定义在
arch/arm/kernel/Setup.c。它首先通过检测出来的处理器类型进行处理器内核的初始化,然后
通过
bootmem_init()函数根据系统定义的
meminfo
结构进行内存结构的初始化,最后调用
paging_init()开启
MMU,创建内核页表,映射所有的物理内存和
IO空间。
2)
创建异常向量表和初始化中断处理函数;
3)
初始化系统核心进程调度器和时钟中断处理机制;
4)
初始化串口控制台(serial-console);
ARM-Linux
在初始化过程中一般都会初始化一个串口做为内核的控制台,这样内核在
启动过程中就可以通过串口输出信息以便开发者或用户了解系统的启动进程。
5)
创建和初始化系统
cache,为各种内存调用机制提供缓存,包括;动态内存分配,虚拟文
件系统(VirtualFile
System)及页缓存。
6)
初始化内存管理,检测内存大小及被内核占用的内存情况;
7)
初始化系统的进程间通信机制(IPC);
当以上所有的初始化工作结束后,start_kernel()函数会调用
rest_init()函数来进行最后的
初始化,包括创建系统的第一个进程-init
进程来结束内核的启动。Init
进程首先进行一系
列的硬件初始化,然后通过命令行传递过来的参数挂载根文件系统。最后
init
进程会执行用
户传递过来的“init=”启动参数执行用户指定的命令,或者执行以下几个进程之一:
execve("/sbin/init",argv_init,envp_init);
execve("/etc/init",argv_init,envp_init);
execve("/bin/init",argv_init,envp_init);
execve("/bin/sh",argv_init,envp_init)。
当所有的初始化工作结束后,cpu_idle()函数会被调用来使系统处于闲置(idle)状态并
等待用户程序的执行。至此,整个
Linux
内核启动完毕。
4.
结论
Linux
内核是一个非常庞大的工程,经过十多年的发展,它已从从最初的几百
KB
大小
发展到现在的几百兆。清晰的了解它执行的每一个过程是件非常困难的事。但是在嵌入式开
发过程中,我们并不需要十分清楚
linux
的内部工作机制,只要适当修改 linux
内核中那些
与硬件相关的部分,就可以将
linux
移植到其它目标平台上。通过对 linux
的启动过程的分
析,我们可以看出哪些是和硬件相关的,哪些是
linux
内核内部已实现的功能,这样在移植
linux
的过程中便有所针对。而 linux内核的分层设计将使
linux
的移植变得更加容易。
参考文献
[1]
詹荣开.嵌入式系统bootloader技术内幕[EB/OL].
http://www.ibm.com/developerworks/cn/linux/l-btloader
/index.html,2003.12.
[2]
Russell King.Booting
ARM Linux[Z].Linux
Documentation.May
2002
[3]
刘淼.嵌入式系统接口设计与Linux驱动程序开发[M].北京航空航天大学出版社.2006.6
[4]
William Gatliff. The
Linux 2.4 Kernel’s Startup Procedure[DB/CD]. 2002
Embedded System Conference San
Francisco,March..2002
[5]
Claudia Salzberg Rodriguez,Gordon Fischer,Steven
Smolski.Linux内核编程[M].陈莉君,贺炎,刘霞林.机
械工业出版社.2006.7
ARM
Linux Start-up Procedure Analysis
Yao
Chengqiang Sun Wensheng
School
of Telecommunication Engineering of Beijing University of Posts and
Telecommunications
Abstract
We
can see embedded Linux in kinds of electronic products because of its
portability. Linux’s
start-up
procedure for different processors is also different. This paper
provides the analysis of
bootloader
execution process and Linux kernel start-up procedure - taking the
S3C2410 ARM
processor
as example.
Keywords:
ARM Linux bootloader start-up procedure
作者简介:姚成强,男,北京邮电大学电信工程学院硕士研究生,主要研究方向是嵌入式开
发和
Linux
编程。