1TB(或1分钟)排序的冠军
作为分布式数据处理的框架,集群的数据处理能力究竟有多快?或许1TB排序可以作为衡量的标准之一。
1TB排序,就是对1TB(1024GB,大约100亿行数据)的数据进行排序。2008年,Hadoop赢得1TB排序基准评估第一名,排序1TB数据耗时209秒。后来,,1分钟排序指的是在一分钟内尽可能多的排序。2009年,在一个1406个节点组成的hadoop集群,在59秒里对500GB完成了排序;而在1460个节点的集群,排序1TB数据只花了62秒。
这么惊人的数据处理能力,是不是让你印象深刻呢?呵呵
TeraSort 例子分为3个模块:
1. TeraGen,用于生成排序的原始数据。
2. TeraSort, 用于完成对原始数据的排序工作。
3. TeraValida, 用于完成对排序结果的验证。
1. TeraGen生成什么样的数据?
1TB的数据?100亿条数据?都是什么样的数据呢?让我们来看几条:
-
.t^#\|v$2\ 0AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEEFFFFFFFFFFGGGGGGGGGGHHHHHHHH
-
75@~?'WdUF 1IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLMMMMMMMMMMNNNNNNNNNNOOOOOOOOOOPPPPPPPP
-
w[o||:N&H, 2QQQQQQQQQQRRRRRRRRRRSSSSSSSSSSTTTTTTTTTTUUUUUUUUUUVVVVVVVVVVWWWWWWWWWWXXXXXXXX
-
^Eu)
-
+l-$$OE/ZH 4GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLMMMMMMMMMMNNNNNNNN
-
LsS8)|.ZLD 5OOOOOOOOOOPPPPPPPPPPQQQQQQQQQQRRRRRRRRRRSSSSSSSSSSTTTTTTTTTTUUUUUUUUUUVVVVVVVV
-
le5awB.$sm 6WWWWWWWWWWXXXXXXXXXXYYYYYYYYYYZZZZZZZZZZAAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDD
-
q__[fwhKFg 7EEEEEEEEEEFFFFFFFFFFGGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLL
-
;L+!2rT~hd 8MMMMMMMMMMNNNNNNNNNNOOOOOOOOOOPPPPPPPPPPQQQQQQQQQQRRRRRRRRRRSSSSSSSSSSTTTTTTTT
-
M^*dDE;6^< 9UUUUUUUUUUVVVVVVVVVVWWWWWWWWWWXXXXXXXXXXYYYYYYYYYYZZZZZZZZZZAAAAAAAAAABBBBBBBB
描述一下:每一行,是一条数据。每一条,由2部分组成,前面是一个由10个随即字符组成的key,后面是一个80个字符组成的value。
排序的任务:按照key的顺序排。
那么1TB的数据从何而来?答案是用程序随即生成的,用一个只有map,没有reduce的MapReduce job,在整个集群上先随即生成100亿行数据。然后,在这个基础上,再运行排序的MapReduce job,以测试集群排序性能。
2. TeraSort的工作原理
先说明一点,熟悉MapReduce的人都知道:排序是MapReduce的天然特性!在数据达到reducer之前,mapreduce框架已经对这些数据按键排序了。
所以,在这个排序的job里,不需要特殊的Mapper和Reducer类。用默认的
IdentityMapper和IdentityReducer即可。
既然排序是天然特性,那么1TB排序的难点在哪里呢??答:100亿行的数据随即分散在1000多台机器上,mapper和reducer都是Identity的,这个难点就在MapReduce的shuffle阶段!关键在如何取样和怎么写Partitioner。
好在这个排序的源代码已近包含在hadoop的examples里了,下面我们就来分析一下。
在TeraSort源码中提供了两种Partitioner,一种是SimplePartitioner,一种是TotalOrderPartitioner,
SimplePartitioner::GetPartition(),直接对key值的前缀做了一些处理,视乎不能保证特定区域的key值分配到特定的bucket.
TotalOrderPartitioner: 是构建了一个3层的字典树,用key的前两个byte作为查询关键字,查找出以2个byte前缀的key值应该属于哪个bucket,应该由哪个reduce去做排序处理。这样每个reduce的输出结果就不需要再merge了。
下面博文是对teraGen,teraSort, teraValide进行测试的例子:
http://blog.csdn.net/zklth/article/details/6295517
其中提到的hadoop-0.20.1-examples.jar,在hadoop的release压缩包里就有,也可以自己下源码编译。
参考文献:
http://blog.csdn.net/zklth/article/details/6295517
阅读(3083) | 评论(0) | 转发(0) |